c-Myc Antagonises the Transcriptional Activity of the Androgen Receptor in Prostate Cancer Affecting Key Gene Networks.

EBioMedicine

Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; PCUK/Movember Centre of Excellence, CCRCB, Queen's University, Belfast, UK. Electronic address:

Published: April 2017

Prostate cancer (PCa) is the most common non-cutaneous cancer in men. The androgen receptor (AR), a ligand-activated transcription factor, constitutes the main drug target for advanced cases of the disease. However, a variety of other transcription factors and signaling networks have been shown to be altered in patients and to influence AR activity. Amongst these, the oncogenic transcription factor c-Myc has been studied extensively in multiple malignancies and elevated protein levels of c-Myc are commonly observed in PCa. Its impact on AR activity, however, remains elusive. In this study, we assessed the impact of c-Myc overexpression on AR activity and transcriptional output in a PCa cell line model and validated the antagonistic effect of c-MYC on AR-targets in patient samples. We found that c-Myc overexpression partially reprogrammed AR chromatin occupancy and was associated with altered histone marks distribution, most notably H3K4me1 and H3K27me3. We found c-Myc and the AR co-occupy a substantial number of binding sites and these exhibited enhancer-like characteristics. Interestingly, c-Myc overexpression antagonised clinically relevant AR target genes. Therefore, as an example, we validated the antagonistic relationship between c-Myc and two AR target genes, KLK3 (alias PSA, prostate specific antigen), and Glycine N-Methyltransferase (GNMT), in patient samples. Our findings provide unbiased evidence that MYC overexpression deregulates the AR transcriptional program, which is thought to be a driving force in PCa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405195PMC
http://dx.doi.org/10.1016/j.ebiom.2017.04.006DOI Listing

Publication Analysis

Top Keywords

c-myc overexpression
12
c-myc
9
androgen receptor
8
prostate cancer
8
transcription factor
8
validated antagonistic
8
patient samples
8
target genes
8
c-myc antagonises
4
antagonises transcriptional
4

Similar Publications

HDAC and MEK inhibition synergistically suppresses HOXC6 and enhances PD-1 blockade efficacy in BRAF-mutant microsatellite stable colorectal cancer.

J Immunother Cancer

January 2025

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China

Background: B-Raf proto-oncogene, serine/threonine kinase (BRAF)-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup.

View Article and Find Full Text PDF

MAF1 inhibits hepatocarcinogenesis by fostering an immunostimulatory tumor microenvironment.

J Immunother Cancer

January 2025

State Key Laboratory of Oncology in South China, and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China

Background: The biological significance of MAF1, a tumor suppressor, in carcinogenesis and immune response of hepatocellular carcinoma (HCC) remains unreported. Understanding the underlying mechanisms by which MAF1 enhances anti-tumor immunity in HCC is crucial for developing novel immunotherapy strategies and enhancing clinical responses to treatment for patients with HCC.

Methods: Mice were subjected to hydrodynamic tail vein injections of transposon vectors to overexpress AKT/NRas, or c-Myc, with or without wild-type (WT) or mutant-activated (-4A) MAF1, or short-hairpin MAF1 (shMAF1).

View Article and Find Full Text PDF

TGM2-mediated histone serotonylation promotes HCC progression via MYC signalling pathway.

J Hepatol

January 2025

Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Wuhan 430030, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, , Chinese Academy of Medical Sciences, Wuhan 430030, China. Electronic address:

Background & Aims: Hepatocellular carcinoma (HCC) is an aggressive malignancy with few effective treatment options. H3Q5ser, a serotonin-based histone modification mediated by transglutaminase 2 (TGM2), affects diverse biological processes, such as neurodevelopment. The role of TGM2-mediated H3Q5ser in HCC progression remains unclear.

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and is the second leading cause of cancer mortality. FAM49B, a member of the FAM49 gene family, is a recently identified, evolutionarily conserved gene. Emerging studies indicate that FAM49B plays a role in various cancers, though its specific mechanism in CRC remains largely unexplored.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and grave malignancies with confined and ineffective therapeutic options. XPO1 is a critical regulator of nuclear export and activation of tumor suppressor proteins. The present study evaluated the therapeutic potential and molecular mechanisms of XPO1 inhibition against PDAC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!