Changes in dietary fiber fractions and gut microbial fermentation properties of wheat bran after extrusion and bread making.

Food Res Int

Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA. Electronic address:

Published: August 2015

The dietary fiber in wheat bran, principally non-starch polysaccharides (NSP), is mostly water-unextractable and is poorly utilized by human gut microbiota. The purpose of this study was to determine the change in water-extractability of NSP in wheat bran upon extrusion and then to determine if extrusion impacts the availability of NSP for fermentation by the fecal microbiota during in vitro fecal fermentation. A secondary objective was to incorporate extruded bran into a product formulation to determine if changes in WE-NSP and NSP fermentation were maintained in a finished product. Bran was extruded using combinations of high or low moisture (15% and 30% wb) and high or low screw speed (120 and 250rpm). All extrusion conditions resulted in increases in WE-NSP and fecal microbiota short chain fatty acid (SCFA) production upon fermentation compared with unextruded bran. Low screw speed and low moisture resulted in the greatest increase in WE-NSP (3-fold) as well as the highest production of SCFA during fermentation (1.4-fold) compared with unextruded bran. Whole wheat breads containing extruded bran did not show increases in either WE-NSP or SCFA production compared with the control. In conclusion, extrusion of wheat bran increased WE-NSP, which enabled greater fermentability by human fecal microbiota. However, once extruded bran was used in a whole wheat bread formulation the changes in fermentation outcomes were no longer evident.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2015.05.005DOI Listing

Publication Analysis

Top Keywords

wheat bran
16
fecal microbiota
12
extruded bran
12
bran
10
dietary fiber
8
bran extrusion
8
nsp fermentation
8
high low
8
low moisture
8
low screw
8

Similar Publications

Randomized controlled trial protocol to analyze the effects of rice with different contents of resistant starch on chronic constipation.

Sci Rep

December 2024

Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and West China School of Nursing, Sichuan University, PO Box No.37, Guo Xue Street, Chengdu, 610041, Sichuan, PR China.

The trend of the aging population worldwide is becoming increasingly severe. As people age, constipation becomes increasingly common in older adults, causing varying degrees of physical and psychological harm to them. Dietary intervention is a common nonpharmacological therapy.

View Article and Find Full Text PDF

Study on the structure and adsorption characteristics of the complex of modified Lentinus edodes stalks dietary fiber and tea polyphenol.

Food Chem

December 2024

School of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Scientific Research Base of Edible Mushroom Processing Technology Integration of Ministry of Agriculture and Rural Affairs, Changchun 130118, China. Electronic address:

The waste Lentinus edodes stalks from Lentinus edodes processing were used as raw materials by the steam explosion to prepare modified Lentinus edodes stalks dietary fiber and combined with tea polyphenols to form the SE-DF-tea polyphenols complex (SE-DF-TPC). The SE-DF-tea polyphenols mixture (SE-DF-TPM) was prepared according to the complex's optimal adsorption conditions. Fluorescence microscopy, Fourier transform infrared spectroscopy, particle size measurement, thermogravimetric analysis, and X-ray diffraction were used to analyze its structure, and the thermal stability of the complex and its adsorption capacity for lipids, cholesterol, and cholates were studied.

View Article and Find Full Text PDF

Ionizing radiation-induced injury often occurs in nuclear accidents or large-dose radiotherapy, leading to acute radiation syndromes characterized by hematopoietic and gastrointestinal injuries even to death. However, current radioprotective drugs are only used in hospitals with unavoidable side effects. Here, we heated the aqueous solution of inulin, a polysaccharide dietary fiber, forming colon-retentive gel as a radiation protector in radiotherapy.

View Article and Find Full Text PDF

Background: Using dietary interventions to steer the metabolic output of the gut microbiota towards specific health-promoting metabolites is often challenging due to interpersonal variation in treatment responses.

Methods: In this study, we combined the ex vivo SIFR (Systemic Intestinal Fermentation Research) technology with untargeted metabolite profiling to investigate the impact of carrot-derived rhamnogalacturonan-I (cRG-I) on ex vivo metabolite production by the gut microbiota of 24 human adults.

Results: The findings reveal that at a dose equivalent to 1.

View Article and Find Full Text PDF

Targeted microbiota dysbiosis repair: An important approach to health management after spinal cord injury.

Ageing Res Rev

December 2024

Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Youyidong Road, Xi'an, Shaanxi, 710000, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi, 710000, China. Electronic address:

Current research primarily focuses on the pathological mechanisms of spinal cord injury (SCI), seeking to promote spinal cord repair and restore motorial and sensory functions by elucidating mechanisms of cell death or axonal regeneration. However, SCI is almost irreversible, and patients often struggle to regain mobility or self-care abilities after injuries. Consequently, there has been significant interest in modulating systemic symptoms following SCI to improve patients' quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!