AI Article Synopsis

  • MIL-101(Cr)@GO, a novel metal-organic framework combined with graphite oxide, was successfully synthesized for enriching trace sulfonamides from milk using dispersive micro-solid phase extraction (DMSPE).
  • Various experimental conditions were optimized, including sorbent type, pH, and adsorption time, which resulted in high recovery rates and low limits of detection for the trace analytes.
  • The DMSPE-UHPLC-MS/MS method demonstrated significant advantages over traditional sorbents, proving to be a quick, sensitive, and cost-effective approach for analyzing sulfonamides in milk samples.

Article Abstract

As a novel material, metal-organic framework/graphite oxide (MIL-101(Cr)@GO) has great potential for the pretreatment of trace analytes. In the present study, MIL-101(Cr)@GO was synthesized using a solvothermal synthesis method at the nanoscale and was applied as sorbent in the dispersive micro-solid phase extraction (DMSPE) for the enrichment of the trace sulfonamides (SAs) from milk samples for the first time. Several experimental parameters including kinds of sorbents, the effect of pH, the amount of MIL-101(Cr)@GO, ionic strength, adsorption time, desorption solvent and desorption time were investigated. Under the optimal conditions, the linear ranges were from 0.1 to 10μg/L, 0.2-20μg/L or 0.5-50μg/L for the analytes with regression coefficients (r) from 0.9942 to 0.9999. The limits of detection were between 0.012 and 0.145μg/L. The recoveries ranged from 79.83% to 103.8% with relative standard deviations (RSDs)<10% (n=3). MIL-101(Cr)@GO exhibited remarkable advantages compared to MIL-101(Cr), MIL-100(Fe), activated carbon and other sorbent materials used in pretreatment methods. A simple, rapid, sensitive, inexpensive and less solvent consuming method of DMSPE-ultra-high performance liquid chromatography-tandem mass spectrometry (DMSPE-UHPLC-MS/MS) was successfully applied to the pre-concentration and determination of twelve SAs in milk samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2016.08.086DOI Listing

Publication Analysis

Top Keywords

sorbent dispersive
8
dispersive micro-solid
8
micro-solid phase
8
phase extraction
8
milk samples
8
novel metal-organic
4
metal-organic framework
4
framework composite
4
mil-101cr@go
4
composite mil-101cr@go
4

Similar Publications

Role of NaCO as Nucleation Seeds to Accelerate the CO Uptake Kinetics of MgO-Based Sorbents.

JACS Au

December 2024

Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland.

There is an urgent need for inexpensive, functional materials that can capture and release CO under industrial conditions. In this context, MgO is a highly promising, earth-abundant CO sorbent. However, despite its favorable carbonation thermodynamics and potential for high gravimetric CO uptakes, MgO-based CO sorbents feature slow carbonation kinetics, limiting their CO uptake during typical industrial contact times.

View Article and Find Full Text PDF

The rapid development in agriculture and industrial sectors has raised some serious global issues like heavy metals pollution of water resources. Cadmium (Cd) is amongst the major water pollutants worldwide. In this study, two novel sorbents were prepared by using post-consumer textile waste (PCTW).

View Article and Find Full Text PDF

Here, a zirconium-based metal organic framework-dispersive solid phase extraction method was established as an efficient, robust, and accurate approach for quantifying apixabanin human plasma samples prior to capillary electrophoresis with diode array detection. Various types of metal organic frameworks based on UiO-66-NH were synthesized by altering modulators and solvents and applied as sorbents in the extraction procedure. Among the tested sorbents, UiO-66-NH prepared in dimethylformamide in the presence of acetic acid was found to be the best sorbent in this method for the extraction of apixaban with high extraction efficiency comparable to other types of UiO-66-NH metal organic frameworks.

View Article and Find Full Text PDF

Activated carbon cloth with MnCoAl layer double hydroxide nanocomposite for the separation and preconcentration of Pb(II) and Ni(II) from food samples.

Food Chem

December 2024

Department of Chemistry, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye; Technology Research & Application Center (ERU-TAUM), Erciyes University, 38039 Kayseri, Türkiye; Turkish Academy of Sciences (TUBA), Çankaya, Ankara, Türkiye. Electronic address:

A novel dispersive solid phase microextraction (dSP-ME) technique using activated carbon cloth (ACC) and layered double hydroxide (LDH) has been developed for enriching and extracting Pb(II) and Ni(II). The ACC@MnCoAl-LDH nanosorbent, has proven with high surface area, superior extraction dynamics and efficiency, compared to traditional sorbents. Structural features of the new ACC@MnCoAl-LDH sorbent were also characterized.

View Article and Find Full Text PDF

This study focuses on the dispersive solid phase extraction technique for the efficient extraction and enrichment of imidacloprid and acetamiprid from pepper samples. A synthesized sorbent was used for this purpose. Once the target analytes were adsorbed, the sorbent was separated using a centrifuge and the analytes were desorbed using a carbon dot solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!