The availability of highly stable and reusable enzymes is one of the main challenges in bio-based industrial processes. Enzyme immobilization and encapsulation represent promising strategies to reach this goal. In this chapter, the synthetic strategy to produce hybrid organic/inorganic nanobiocatalysts (NBC) is reported. This strategy is based on the sequential immobilization of an enzyme on the surface of silica nanoparticles followed by the growth, at the surface of the nanoparticles, of a shielding layer which serves as an armor to protect the enzyme against denaturation/degradation. This armor is produced through a thickness-controlled organosilane poly-condensation onto the nanoparticle surface around the enzyme to form a protective organosilica layer. The armored nanobiocatalysts present enhanced catalytic activity and improved stability against heat, pH, chaotropic agents, proteases, and ultrasound. The method is versatile in that it can be successfully adapted to a number of different enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2016.12.006DOI Listing

Publication Analysis

Top Keywords

organosilica layer
8
hybrid organic/inorganic
8
organic/inorganic nanobiocatalysts
8
enzyme
5
enzyme armoring
4
armoring organosilica
4
layer synthesis
4
synthesis characterization
4
characterization hybrid
4
nanobiocatalysts availability
4

Similar Publications

Template-Guided Nondeterministic Assembly of Organosilica Nanodots for Multifunctional Physical Unclonable Functions.

ACS Appl Mater Interfaces

January 2025

Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.

Optical physical unclonable functions (PUFs) are gaining attention as a robust security solution for identification in the expanding Internet of Things (IoT). To enhance the security and functionality of PUFs, integrating multiple optical responses─such as fluorescence and structural color─into a single system is essential. These diverse optical properties enable multilevel authentication, where different layers of security can be verified under varying light conditions, greatly reducing the risk of counterfeiting.

View Article and Find Full Text PDF

We report a synthetic strategy to produce nano-immobilised and organosilica-shielded enzymes of which the biocatalytic activity is, by design, chemically enhanced under reductive conditions. The enzymes were immobilised onto silica nanoparticles through a reduction-responsive crosslinker and further shielded in an organosilica layer of controlled thickness. Under reducing conditions, disulphide bonds linking the protein to the carrier material were reduced, triggering enzyme activation.

View Article and Find Full Text PDF

Organosilica Nanodots Doped ZnO Cathode Interface Layer for Highly Efficient and Stable Inverted Polymer Solar Cells.

ACS Appl Mater Interfaces

December 2024

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays,South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China.

Interfacial engineering is essential to achieve optical efficiencies and facilitate the industrialization of organic solar cells (OSCs). By doping organosilica nanodots (OSiNDs) into zinc oxide (ZnO), we have developed a hybrid ZnO/OSiNDs (4 wt %) cathode interface layer (CIL) that significantly enhances the overall performance of inverted organic solar cells (i-OSCs). In the PM6/BTP-eC9 active layer system, i-OSC devices with a ZnO/OSiNDs (4 wt %) CIL exhibit a superior power conversion efficiency (PCE) of 17.

View Article and Find Full Text PDF

Enzyme stability and activity are pivotal factors for their implementation in different industrial applications. Enzyme supramolecular engineering relies on the fabrication of a tailor-made enzyme nano-environment to ensure enzyme stability without impairing activity. Cyclodextrins (CDs), cyclic oligomers of glucose, act as protein chaperones and stabilize, upon interaction with hydrophobic amino acid residues exposed at the protein surface, its three-dimensional structure.

View Article and Find Full Text PDF

Dual-modal overcoming of physical barriers for improved photodynamic cancer therapy via soft organosilica nanocapsules.

J Nanobiotechnology

November 2024

Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Jiangsu National Synergetic Innovation Centre for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P.R. China.

Amidst the burgeoning field of cancer nanomedicine, dense extracellular matrices and anomalous vascular structures in the tumor microenvironment (TME) present substantial physical barriers to effective therapeutic delivery. These physical barriers hinder the optimal bioavailability of nanomedicine. Here, we propose a pioneering dual-modal strategy for overcoming physical barriers via soft organosilica nanocapsules (SMONs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!