A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates. | LitMetric

Polymer-Based Protein Engineering: Synthesis and Characterization of Armored, High Graft Density Polymer-Protein Conjugates.

Methods Enzymol

Center for Polymer-Based Protein Engineering, ICES, Carnegie Mellon University, Pittsburgh, PA, United States; Carnegie Mellon University, Pittsburgh, PA, United States. Electronic address:

Published: August 2017

Atom transfer radical polymerization (ATRP) from the surface of a protein can generate remarkably dense polymer shells that serve as armor and rationally tune protein function. Using straightforward chemistry, it is possible to covalently couple or display multiple small molecule initiators onto a protein surface. The chemistry is fine-tuned to be sequence specific (if one desires a single targeted site) at controlled density. Once the initiator is anchored on the protein surface, ATRP is used to grow polymers on protein surface, in situ. The technique is so powerful that a single-protein polymer conjugate molecule can contain more than 90% polymer coating by weight. If desired, stimuli-responsive polymers can be "grown" from the initiated sites to prepare enzyme conjugates that respond to external triggers such as temperature or pH, while still maintaining enzyme activity and stability. Herein, we focus mainly on the synthesis of chymotrypsin-polymer conjugates. Control of the number of covalently coupled initiator sites by changing the stoichiometric ratio between enzyme and the initiator during the synthesis of protein-initiator complexes allowed fine-tuning of the grafting density. For example, very high grafting density chymotrypsin conjugates were prepared from protein-initiator complexes to grow the temperature-responsive polymers, poly(N-isopropylacrylamide), and poly[N,N'-dimethyl(methacryloyloxyethyl) ammonium propane sulfonate]. Controlled growth of polymers from protein surfaces enables one to predictably manipulate enzyme kinetics and stability without the need for molecular biology-dependent mutagenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mie.2016.12.005DOI Listing

Publication Analysis

Top Keywords

protein surface
12
polymers protein
8
protein-initiator complexes
8
grafting density
8
protein
6
polymer-based protein
4
protein engineering
4
engineering synthesis
4
synthesis characterization
4
characterization armored
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!