A variety of modeling approaches can be used to project the future development of forest systems, and help to assess the implications of different management alternatives for biodiversity and ecosystem services. This diversity of approaches does however present both an opportunity and an obstacle for those trying to decide which modeling technique to apply, and interpreting the management implications of model output. Furthermore, the breadth of issues relevant to addressing key questions related to forest ecology, conservation biology, silviculture, economics, requires insights stemming from a number of distinct scientific disciplines. As forest planners, conservation ecologists, ecological economists and silviculturalists, experienced with modeling trade-offs and synergies between biodiversity and wood biomass production, we identified fifteen key considerations relevant to assessing the pros and cons of alternative modeling approaches. Specifically we identified key considerations linked to study question formulation, modeling forest dynamics, forest processes, study landscapes, spatial and temporal aspects, and the key response metrics - biodiversity and wood biomass production, as well as dealing with trade-offs and uncertainties. We also provide illustrative examples from the modeling literature stemming from the key considerations assessed. We use our findings to reiterate the need for explicitly addressing and conveying the limitations and uncertainties of any modeling approach taken, and the need for interdisciplinary research efforts when addressing the conservation of biodiversity and sustainable use of environmental resources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2017.04.001DOI Listing

Publication Analysis

Top Keywords

biodiversity wood
12
key considerations
12
modeling
8
modeling approaches
8
wood biomass
8
biomass production
8
forest
6
key
6
projecting biodiversity
4
wood production
4

Similar Publications

The role of trait evolution in shaping the functional and ecological diversity of tropical forests remains poorly understood. Analyses of trait variation as a function of evolutionary history and environmental variables should reveal the drivers of species distributions, as well as generate insights valuable to conservation. Here, we focus on the Dipterocarpaceae, the key plant family underpinning the hyperdiversity of South-East Asian tropical forest canopies and of major conservation concern due to over-exploitation for timber, cultivation, and climate change.

View Article and Find Full Text PDF

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

The impacts of degradation and deforestation on tropical forests are poorly understood, particularly at landscape scales. We present an extensive ecosystem analysis of the impacts of logging and conversion of tropical forest to oil palm from a large-scale study in Borneo, synthesizing responses from 82 variables categorized into four ecological levels spanning a broad suite of ecosystem properties: (i) structure and environment, (ii) species traits, (iii) biodiversity, and (iv) ecosystem functions. Responses were highly heterogeneous and often complex and nonlinear.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR.

View Article and Find Full Text PDF

Oak wilt causes severe dieback of Quercus serrata, a dominant tree species in the lowlands across Japan. This study evaluated the effects of oak wilt on the wood-inhabiting fungal community and the decay rate of deadwood using a field monitoring experiment. We analysed the fungal metabarcoding community from 1200 wood samples obtained from 120 experimental logs from three forest sites at five different time points during the initial 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!