A novel supramolecular nanoparticle system with core-shell structure was designed based on β-cyclodextrin-conjugated poly-l-lysine (PLCD) and hyaluronic acid for co-delivery of gene and chemotherapy agent targeting hepatocellular carcinoma (HCC). PLCD was synthesized by the conjugation of monoaldehyde activated β-cyclodextrin with poly-l-lysine via Shiff's base reaction. Doxorubicin, as a model therapeutic drug, was included into the hydrophobic cavity of β-cyclodextrin in PLCD through host-guest interaction. OligoRNA, as a model gene, was further condensed into the inclusion complexes by electrostatic interaction to form oligoRNA and doxorubicin co-loaded supramolecular nanoparticle system. Hyaluronic acid, which is often over-expressed by HCC cells, was coated on the surface of the above nanoparticles to construct HCC-targeted nanoparticle system. These nanoparticles had regular spherical shape with classic "core-shell" structure, and their size and zeta potential were 195.8nm and -22.7mV, respectively. The nanoparticles could effectively deliver doxorubicin and oligoRNA into HCC cells via CD44 receptor-mediated endocytosis and significantly inhibit the cell proliferation. In the nude mice bearing MHCC-97H tumor, the nanoparticles could be efficiently accumulated in the tumor, suggesting their strong hepatoma-targeting capability. These findings demonstrated that this novel supramolecular nanoparticle system had a promising potential for combining gene therapy and chemotherapy to treat HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2017.04.008 | DOI Listing |
Curr Med Chem
January 2025
Department of Pharmaceutical Biotechnology, Anadolu University, Eskişehir, Turkey.
Introduction: The effectiveness of pharmaceutical treatment methods is vital in cancer treatment. In this context, various targeted drug delivery systems are being developed to minimize or eliminate existing deficiencies and harms. This study aimed to model the interaction of MEN-based drug-targeting systems with cancer cells and determine the properties of interacting MENs.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India.
Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.
Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.
Curr Org Synth
January 2025
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Introduction: The development of efficient and sustainable catalytic methodolo-gies has garnered considerable attention in contemporary organic synthesis.
Methods: Herein, we present a novel approach employing the Cu@DPP-SPION catalyst for the synthesis of ethyl 4-(aryl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate derivatives. This versatile catalytic system incorporates copper nanoparticles supported on 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)benzoic acid-functionalized superparamagnetic iron oxide nanoparticles (SPIONs).
World J Diabetes
January 2025
State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, Guangdong Province, China.
Ma recently reported in the that ferroptosis occurs in osteoblasts under high glucose conditions, reflecting diabetes pathology. This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1 (PCBP1). Additionally, Ma used a lentivirus infection system to express PCBP1.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
Program of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia.
Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!