AI Article Synopsis

  • This study explores how exosomes, tiny vesicles that carry RNA, may play a role in the immune regulation of relapsing-remitting multiple sclerosis (RRMS) compared to healthy controls (HC).
  • Researchers used next generation sequencing (NGS) to analyze the exosomal RNA profiles in 19 RRMS patients and 10 HC, identifying specific microRNAs (miRNAs) that were differentially expressed and significantly decreased during RRMS relapses.
  • The findings suggest that the unique RNA profile in exosomes of RRMS patients could indicate disrupted communication between cells and that certain miRNAs might serve as potential biomarkers to differentiate between disease relapses.

Article Abstract

Objective: Accumulating evidence supports a role for exosomes in immune regulation. In this study, we investigated the total circulating exosome transcriptome in relapsing-remitting multiple sclerosis (RRMS) patients and healthy controls (HC).

Methods: Next generation sequencing (NGS) was used to define the global RNA profile of serum exosomes in 19 RRMS patients (9 in relapse, 10 in remission) and 10 HC. We analyzed 5 million reads and >50,000 transcripts per sample, including a detailed analysis of microRNAs (miRNAs) differentially expressed in RRMS. The discovery set data were validated by quantification using digital quantitative polymerase chain reaction with an independent cohort of 63 RRMS patients (33 in relapse, 30 in remission) and 32 HC.

Results: Exosomal RNA NGS revealed that of 15 different classes of transcripts detected, 4 circulating exosomal sequences within the miRNA category were differentially expressed in RRMS patients versus HC: hsa-miR-122-5p, hsa-miR-196b-5p, hsa-miR-301a-3p, and hsa-miR-532-5p. Serum exosomal expression of these miRNAs was significantly decreased during relapse in RRMS. These miRNAs were also decreased in patients with a gadolinium enhancement on brain magnetic resonance imaging. In vitro secretion of these miRNAs by peripheral blood mononuclear cells was also significantly impaired in RRMS.

Interpretation: These data show that circulating exosomes have a distinct RNA profile in RRMS. Because putative targets for these miRNAs include the signal transducer and activator of transcription 3 and the cell cycle regulator aryl hydrocarbon receptor, the data suggest a disturbed cell-to-cell communication in this disease. Thus, exosomal miRNAs might represent a useful biomarker to distinguish multiple sclerosis relapse. Ann Neurol 2017;81:703-717.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ana.24931DOI Listing

Publication Analysis

Top Keywords

rrms patients
16
multiple sclerosis
12
exosome transcriptome
8
rna profile
8
patients relapse
8
relapse remission
8
differentially expressed
8
expressed rrms
8
mirnas decreased
8
rrms
7

Similar Publications

Olfactory dysfunction (OD) is an underestimated symptom in multiple sclerosis (MS). Multiple factors may play a role in the OD reported by MS patients, such as ongoing inflammation in the central nervous system (CNS), damage to the olfactory bulbs due to demyelination, and the presence of plaques in brain areas associated with the olfactory system. Indeed, neuroimaging studies in MS have shown a clear association of the OD with the number and activity of MS-related plaques in frontal and temporal brain regions.

View Article and Find Full Text PDF

Forecasting the progression of the disease in the early inflammatory stage of the most prevalent type of multiple sclerosis (MS), referred to as relapsing-remitting multiple sclerosis (RRMS), is essential for making prompt treatment modifications, aimed to reduce clinical relapses and disability. In total, 58 patients with RRMS, having an Expanded Disability Status Scale (EDSS) score less than 4, were included in this study. Baseline magnetic resonance imaging (MRI) was performed, and brain and spinal cord lesions were evaluated.

View Article and Find Full Text PDF

Background Objectives: This study was compared the Borrelia antibodies and chemokine ligand 13 (CXCL13) levels in cerebrospinal fluid (CSF) samples from cases diagnosed with relapsing-remitting multiple sclerosis (RRMS), radiologically isolated syndrome (RIS), and pseudotumour cerebri (PTC).

Methods: A total of 43 CSF samples were collected from patients diagnosed with RRMS, RIS and PTC. We prospectively investigated Borrelia IgG and IgM antibodies in the CSF samples of the cases by enzyme-linked immunosorbent assay (ELISA) and Western blot (WB) method, and CXCL13 levels by ELISA.

View Article and Find Full Text PDF

Background: The PANORAMA survey aimed to assess current treatment practice for individuals with new diagnoses of relapsing-remitting multiple sclerosis (RRMS) in the United Kingdom and to explore variations in treatment approaches with an emphasis on escalation vs early high-efficacy treatment (HET) and treatment goals.

Methods: Health care professionals (HCPs) from the UK treating patients with RRMS took part in interviews facilitated by a structured questionnaire. Data were analyzed descriptively using quantitative or qualitative methods, as appropriate.

View Article and Find Full Text PDF

Protective Effects of Heat-Killed Lactobacilli against Plasma-Induced Neurotoxicity in Multiple Sclerosis.

Probiotics Antimicrob Proteins

January 2025

Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.

Heat-killed lactobacilli seem to have protective effects against oxidative stress and neurotoxicity. This study aimed to evaluate the antioxidant properties of specific heat-killed lactobacilli extracts and determine their neuroprotective effects against the neurotoxicity induced by blood plasma from people with multiple sclerosis (MS). The antioxidant activity of the three heat-killed lactobacilli was measured using the DPPH assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!