The "good-cop bad-cop" TGF-beta role in breast cancer modulated by non-coding RNAs.

Biochim Biophys Acta Gen Subj

MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Farmacy Iuliu-Hatieganu, Marinescu 23 Street, Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34-36 Street, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Marinescu 23 Street, No. 23, 400337 Cluj-Napoca, Romania. Electronic address:

Published: July 2017

Background: Lack of early diagnosis methods and the development of drug resistance are among the main reasons for increased mortality rates within breast cancer patients. These two aspects are governed by specific pro-carcinogenic modifications, where TGBβ-induced EMT is one of the leading actors. Endowment of the epithelial cells with mesenchymal characteristics allows them to migrate and invade secondary tissues in order to form malignant sites and also confers chemoresistance. TGFβ which role switches from the tumor suppressor cytokine to the oncogenic one favoring the tumor microenvironment regulates this process.

Scope Of Review: This review aims to comprehensively present the updated TGFβ-induced EMT in breast cancer, including the regulatory role of the non-coding RNAs with focus on the miR-200 family and newly discovered lncRNAs such as HOTAIRM1. Additionally, a new phenotype, P-EMT, also modulated by miR-200 and miR-34 families that form complex feedback loops with TGFβ, SNAI1 and ZEB1/2 is presented under an updated form.

Major Conclusions: The hallmarks of EMT are becoming increasingly associated with aggressive forms of breast cancer and low survival rates among patients. Considering that this phenotypical switch can trigger drug resistance, invasion and metastasis, inhibition of EMT could represent an important milestone in mammary cancer treatment.

General Significance: The present review assembles the most recent data regarding TGFβ induced EMT, including the input of non-coding RNAs, contributing to the possible development of new targeted treatment strategies for cancer patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2017.04.007DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
non-coding rnas
12
drug resistance
8
cancer patients
8
cancer
6
emt
5
"good-cop bad-cop"
4
bad-cop" tgf-beta
4
tgf-beta role
4
breast
4

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

Background: Bangladesh and West Bengal, India, are 2 densely populated South Asian neighboring regions with many socioeconomic and cultural similarities. In dealing with breast cancer (BC)-related issues, statistics show that people from these regions are having similar problems and fates. According to the Global Cancer Statistics 2020 and 2012 reports, for BC (particularly female BC), the age-standardized incidence rate is approximately 22 to 25 per 100,000 people, and the age-standardized mortality rate is approximately 11 to 13 per 100,000 for these areas.

View Article and Find Full Text PDF

Purpose: Breast cancer ranks as the most prevalent cancer in women, characterized by heightened fatty acid synthesis and glycolytic activity. Fatty acid synthase (FASN) is prominently expressed in breast cancer cells, regulating fatty acid synthesis, thereby enhancing tumor growth and migration, and leading to radioresistance. This study aims to investigate how FASN inhibition affects cell proliferation, migration, and radioresistance in breast cancer, as well as the mechanisms involved.

View Article and Find Full Text PDF

Triple negative breast cancers often contain higher numbers of tumour-infiltrating lymphocytes compared with other breast cancer subtypes, with their number correlating with prolonged survival. Since little is known about tumour-infiltrating lymphocyte trafficking in triple negative breast cancers, we investigated the relationship between tumour-infiltrating lymphocytes and the vascular compartment to better understand the immune tumour microenvironment in this aggressive cancer type. We aimed to identify mechanisms and signaling pathways responsible for immune cell trafficking in triple negative breast cancers, specifically of basal type, that could potentially be manipulated to change such tumours from immune "cold" to "hot" thereby increasing the likelihood of successful immunotherapy in this challenging patient population.

View Article and Find Full Text PDF

This study presents a novel approach to modeling breast cancer dynamics, one of the most significant health threats to women worldwide. Utilizing a piecewise mathematical framework, we incorporate both deterministic and stochastic elements of cancer progression. The model is divided into three distinct phases: (1) initial growth, characterized by a constant-order Caputo proportional operator (CPC), (2) intermediate growth, modeled by a variable-order CPC, and (3) advanced stages, capturing stochastic fluctuations in cancer cell populations using a stochastic operator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!