Automotive shredder residue (ASR) can create difficulties when managing, with its production increasing. It is made of different type of plastics, foams, elastomers, wood, glasses and textiles. For this reason, it is complicated to dispose of in a cost effective way, while also respecting the stringent environmental restrictions. Among thermal treatments, pyrolysis seems to offer an environmentally attractive method for the treatment of ASR; it also allows for the recovery of valuable secondary materials/fuels such as pyrolysis oils, chars, and gas. While, there is a great deal of significant research on ASR pyrolysis, the literature on higher scale pyrolysis experiments is limited. To improve current literature, the aim of the study was to investigate the pyrolysis of ASR in a bench scale rotary kiln. The Italian ASR was separated by dry-sieving into two particle size fractions: d<30mm and d>30mm. Both the streams were grounded, pelletized and then pyrolyzed in a continuous bench scale rotary kiln at 450, 550 and 650°C. The mass flow rate of the ASR pellets was 200-350g/h and each test ran for about 4-5h. The produced char, pyrolysis oil and syngas were quantified to determine product distribution. They were thoroughly analyzed with regard to their chemical and physical properties. The results show how higher temperatures increase the pyrolysis gas yield (44wt% at 650°C) as well as its heating value. The low heating value (LHV) of syngas ranges between 18 and 26MJ/Nmdry. The highest pyrolysis oil yield (33wt.%) was observed at 550°C and its LHV ranges between 12.5 and 14.5MJ/kg. Furthermore, only two out of the six produced chars respect the LHV limit set by the Italian environmental regulations for landfilling. The obtained results in terms of product distribution and their chemical-physical analyses provide useful information for plant scale-up.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.wasman.2017.04.002 | DOI Listing |
J Environ Radioact
January 2025
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
Noble gas transport through geologic media has important applications in the prediction and characterization of measured gas signatures related to underground nuclear explosions (UNEs). Retarding processes such as adsorption can cause significant species fractionation of radionuclide gases, which has implications for measured and predicted signatures used to distinguish radioxenon originating from civilian nuclear facilities or from UNEs. Accounting for the effects of variable water saturation in geologic media on tracer transport is one of the most challenging aspects of modeling gas transport because there is no unifying relationship for the associated tortuosity changes between different rock types, and reactive transport processes such as adsorption that are affected by the presence of water likewise behave differently between gas species.
View Article and Find Full Text PDFEng Biol
December 2024
Analytik Jena AG Analytik Jena UK Ltd London UK.
Breakthroughs in engineering biology will solve the challenges facing humanity, by harnessing life itself. Standing in the way of these breakthroughs are the technical challenges of collecting the requisite data. Data variability and reproducibility problems, mean the odds are stacked against emerging biotechs.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Health Disparities Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Black women (BW) experience age-adjusted breast cancer mortality rates that are 40% higher than White women. Although, screening rates for breast cancer are similar between White and Black women, differences in mammography utilization exist among women with lower socioeconomic status (SES). Moreover, perceived everyday discrimination (PED) has been shown to have an inverse relationship on health screening behavior among BW.
View Article and Find Full Text PDFWater Res
December 2024
Institute for Advanced Membrane Technology (IAMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany. Electronic address:
Calcium (Ca)-enhanced organic matter (OM) fouling of nanofiltration (NF) membranes leads to reduced flux during desalination and requires frequent cleaning. Fouling mechanisms are not fully understood, which limits the development of targeted fouling control methods. This study employed synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near-edge structure (XANES) spectroscopy to quantify the spatial distribution and mass of Ca deposition as well as changes in the Ca coordination environment characteristic of specific fouling mechanisms, respectively.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Environmental Technology and Water Resources Postgraduate Program, Department of Civil and Environmental Engineering, University of Brasília, Brasília 70910-900, Brazil.
The frequency and intensity of harmful cyanobacterial blooms have increased in the last decades, posing a risk to public health since conventional water treatments do not effectively remove extracellular cyanotoxins. Consequently, advanced technologies such as the Fenton process are required to ensure water safety. The cyanotoxin cylindrospermopsin (CYN) demands special attention, as it is abundant in the extracellular fraction and has a high toxicological potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!