Risk Prediction Models in CKD.

Semin Nephrol

Division of Nephrology, Department of Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Chronic Disease Innovation Center, Seven Oaks General Hospital, Winnipeg, Manitoba, Canada. Electronic address:

Published: March 2017

Chronic kidney disease (CKD) currently affects 20 million Americans and is associated with increased morbidity and mortality. Resource-efficient and appropriate treatment of CKD benefits the patient and provides improved resource allocation for the health care system. Prediction models can be useful in efficiently allocating resources, and currently are being used at the bedside for several important clinical decisions. There is a paucity of prediction models in use in nephrology, but one such model, the Kidney Failure Risk Equation, uses routinely collected laboratory values and can inform clinical decisions related to the following: (1) triage of nephrology referrals, (2) evaluating the need for more intensive interdisciplinary clinic care, (3) determining the timing of modality education, and (4) dialysis access planning. The development of new models that predict survival and quality of life on dialysis, success on home modalities, failure of arteriovenous fistulas, and risk of cardiovascular disease in patients with CKD is needed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.semnephrol.2016.12.004DOI Listing

Publication Analysis

Top Keywords

prediction models
12
clinical decisions
8
risk prediction
4
models
4
ckd
4
models ckd
4
ckd chronic
4
chronic kidney
4
kidney disease
4
disease ckd
4

Similar Publications

Background: Kidney tumors, common in the urinary system, have widely varying survival rates post-surgery. Current prognostic methods rely on invasive biopsies, highlighting the need for non-invasive, accurate prediction models to assist in clinical decision-making.

Purpose: This study aimed to construct a K-means clustering algorithm enhanced by Transformer-based feature transformation to predict the overall survival rate of patients after kidney tumor resection and provide an interpretability analysis of the model to assist in clinical decision-making.

View Article and Find Full Text PDF

Background: Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity.

Methods: A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years.

View Article and Find Full Text PDF

Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics.

Environ Sci Pollut Res Int

January 2025

Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.

This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g.

View Article and Find Full Text PDF

We introduce EmoAtlas, a computational library/framework extracting emotions and syntactic/semantic word associations from texts. EmoAtlas combines interpretable artificial intelligence (AI) for syntactic parsing in 18 languages and psychologically validated lexicons for detecting the eight emotions in Plutchik's theory. We show that EmoAtlas can match or surpass transformer-based natural language processing techniques, BERT or large language models like ChatGPT 3.

View Article and Find Full Text PDF

Purpose: The study explores the role of multimodal imaging techniques, such as [F]F-PSMA-1007 PET/CT and multiparametric MRI (mpMRI), in predicting the ISUP (International Society of Urological Pathology) grading of prostate cancer. The goal is to enhance diagnostic accuracy and improve clinical decision-making by integrating these advanced imaging modalities with clinical variables. In particular, the study investigates the application of few-shot learning to address the challenge of limited data in prostate cancer imaging, which is often a common issue in medical research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!