Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Participant recruitment is an ongoing challenge in health research. Recruitment may be especially difficult for studies of access to health care because, even among those who are in care, people using services least often also may be hardest to contact and recruit. Opt-out recruitment methods (in which potential participants are given the opportunity to decline further contact about the study (opt out) following an initial mailing, and are then contacted directly if they have not opted out within a specified period) can be used for such studies. However, there is a dearth of literature on the effort needed for effective opt-out recruitment.
Methods: In this paper we describe opt-out recruitment procedures for two studies on access to health care within the U.S. Department of Veterans Affairs. We report resource requirements for recruitment efforts (number of opt-out packets mailed and number of phone calls made). We also compare the characteristics of study participants to potential participants via t-tests, Fisher's exact tests, and chi-squared tests.
Results: Recruitment rates for our two studies were 12 and 21%, respectively. Across multiple study sites, we had to send between 4.3 and 9.2 opt-out packets to recruit one participant. The number of phone calls required to arrive at a final status for each potentially eligible Veteran (i.e. study participation or the termination of recruitment efforts) were 2.9 and 6.1 in the two studies, respectively. Study participants differed as expected from the population of potentially eligible Veterans based on planned oversampling of certain subpopulations. The final samples of participants did not differ statistically from those who were mailed opt-out packets, with one exception: in one of our two studies, participants had higher rates of mental health service use in the past year than did those mailed opt-out packets (64 vs. 47%).
Conclusions: Our results emphasize the practicality of using opt-out methods for studies of access to health care. Despite the benefits of these methods, opt-out alone may be insufficient to eliminate non-response bias on key variables. Researchers will need to balance considerations of sample representativeness and feasibility when designing studies investigating access to care.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5391553 | PMC |
http://dx.doi.org/10.1186/s12874-017-0333-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!