Protein misfolding and aggregation have been associated with the onset of neurodegenerative disorders. Recent studies demonstrate that the aggregation process can result in a high diversity of protein conformational states, however the identity of the specific species responsible for the cellular damage is still unclear. Here, we use yeast as a model to systematically analyse the intracellular effect of expressing 21 variants of the amyloid-ß-peptide, engineered to cover a continuous range of intrinsic aggregation propensities. We demonstrate the existence of a striking negative correlation between the aggregation propensity of a given variant and the oxidative stress it elicits. Interestingly, each variant generates a specific distribution of protein assemblies in the cell. This allowed us to identify the aggregated species that remain diffusely distributed in the cytosol and are unable to coalesce into large protein inclusions as those causing the highest levels of oxidative damage. Overall, our results indicate that the formation of large insoluble aggregates may act as a protective mechanism to avoid cellular oxidative stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390671 | PMC |
http://dx.doi.org/10.1016/j.redox.2017.03.027 | DOI Listing |
Discov Oncol
January 2025
Department of Cardiovascular Medicine, Jiu Jiang NO.1 People's Hospital, Jiujiang, 332000, China.
Background: Ischemic heart disease (IHD) may share biological mechanisms with cancer, including ovarian cancer, through pathways such as chronic inflammation and oxidative stress. However, the relationship between IHD and ovarian cancer subtypes remains unclear. This study used Mendelian randomization (MR) to explore potential causal associations.
View Article and Find Full Text PDFInflammation
January 2025
Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan.
Parkinson's disease (PD) stands as the sec most prevalent incapacitating neurodegenerative disorder characterized by deterioration of dopamine-producing neurons in the substantia nigra. Coenzyme Q10 (CoQ10) has garnered attention as a potential antioxidant, anti-inflammatory agent and enhancer of mitochondrial complex-I activity. This study aimed to examine and compare the effectiveness of liposomal and non-encapsulated CoQ10 in rotenone induced-PD mouse model over a 21-day treatment duration.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Molecular Genetics and Cancer Biology Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore-46, Tamil Nadu, India.
Background: Electromagnetic radiation (EMR) from wireless technology and mobile phones, operates at various frequencies. The present study analyses the major impact of short-term exposure to 2.4 GHz frequency EMR, using the two model systems chick embryos and SH-SY5Y cell lines.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Biopharmaceutical Lab, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
Previous studies have shown that FGF-21 can ameliorate hyperglycemia and improve the level of oxidative stress in vivo in diabetic mice. The hypoglycemic effect is safe and lasting, but it takes a longer time to exert its effect. Insulin treatment of canine diabetes takes effect quickly; however, its action time is short, and it is prone to cause hypoglycemia.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Dermatology, Dongshan Hospital, Guofengyuan Building, Xuezi Avenue, Meijiang District, Meizhou, 514011, Guangdong, China.
Platelet-rich plasma (PRP) holds promising prospects for the treatment of skin photoaging. This study aims to unravel the mechanism underlying PRP's anti-photoaging properties. Partial skin of rats was irradiated with ultraviolet (UV) and injected with PRP, and the skin appearance, pathological state, and aging conditions were determined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!