The concept of targeted radionuclide therapy (TRT) relies on the use of injected nuclear medicine as treating agents, targeted at the cellular or molecular level. The growth of the interest in TRT was stimulated by the advances in radionuclide production and labeling as well as by the improvement in the knowledge of appropriate and specific molecular targets. In recent years, different studies on TRT were focused on the evaluation of radionuclide compounds able to combine imaging of the disease with TRT, in a theranostic approach. This approach is of particular interest towards the personalization of treatments, allowing both the baseline characterization of oncological pathologies and treatment optimization by correct dosimetric calculation as well as therapy monitoring. This paper presents a review of recent literature on TRT, with a particular focus on clinical applications promoting such a theranostic approach, showing the impact of the synergy of diagnostic imaging and therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2741/4569 | DOI Listing |
Mol Med Rep
March 2025
The First Central Clinical School, Tianjin Medical University, Tianjin 300000, P.R. China.
Hepatocellular carcinoma (HCC) is a common cause of cancer‑related mortality and morbidity worldwide. While iodine‑125 (I) particle brachytherapy has been extensively used in the clinical treatment of various types of cancer, the precise mechanism underlying its effectiveness in treating HCC remains unclear. In the present study, MHCC‑97H cells were treated with I, after which, cell viability and proliferation were assessed using Cell Counting Kit‑8, 5‑ethynyl‑2'‑deoxyuridine and colony formation assays, cell invasion and migration were evaluated using wound healing and Transwell assays, and cell apoptosis was determined using flow cytometry.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Chemistry, Indian Institute of Technology Indore, Indore 453552 India; Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 India. Electronic address:
Prostate cancer (PCa) has emerged to be the second leading cause of cancer-related deaths in men. Molecular imaging of PCa using targeted radiopharmaceuticals specifically to PCa cells promises accurate staging of primary disease, detection of localized and metastasized tumours, and helps predict the progression of the disease. Glutamate urea heterodimers have been popularly used as high-affinity small molecules in the binding pockets of popular and well-characterized PCa biomarker, prostate specific membrane antigen (PSMA).
View Article and Find Full Text PDFClin Nucl Med
December 2024
From the Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
We present the case of a 58-year-old man with metastatic medullary thyroid carcinoma refractory to conventional therapies, including peptide receptor radionuclide therapy. Despite multiple interventions, serum calcitonin and carcinoembryonic antigen levels continued to rise. Subsequent evaluation with 99mTc-FAPI-46 revealed remarkable uptake in metastatic lesions, suggesting a potential role for FAPI-labeled radioisotopes in the management of medullary thyroid carcinoma.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Wake Forest University School of Medicine, Winston-Salem, NC, USA.
Background: The G protein-coupled receptor GPR39 is heavily associated with the pathogenesis of neurologic disorders, including Alzheimer's disease (AD) and related dementia (ADRD). Its dysregulation of zinc 2+ (Zn) processes triggers metallic dyshomeostasis, oxidative stress, neuroinflammation, microtubule destabilization, synaptic dysfunction, and tau phosphorylation-all hallmarks of neurodegeneration. Hence, pharmacologic modulation of GPR39 could offer an effective treatment against AD and ADRD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Wake Forest University School of Medicine, Winston-Salem, NC, USA.
Background: Brains affected by Alzheimer's disease (AD) exhibit senile plaques containing amyloid beta (Aß) peptides and neurofibrillary tangles, formed when tau becomes hyperphosphorylated and disengages from microtubules (MTs). Early instability in MTs is observed in the AD process, emphasizing its significance in connecting the hallmark pathologies of Aß/tau-based degenerative events. While current Aß and tau PET approaches can characterize disease lesions, they fall short in capturing earlier molecular events.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!