Tubulointerstitial injury is one of the hallmarks of renal disease. In particular, interstitial fibrosis has a prominent role in the development and progression of kidney injury. Collagen-producing fibroblasts are responsible for the ECM deposition. However, the origin of those activated fibroblasts is not clear. This chapter will discuss in detail the concept of epithelial to mesenchymal transition (EMT) and endothelial to mesenchymal transition (EndMT) in the context of fibrosis and kidney disease. In short, EMT and EndMT involve a change in cell shape, loss of polarity and increased motility associated with increased collagen production. Thus, providing a new source of fibroblasts. However, many controversies exist regarding the existence of EMT and EndMT in kidney disease, as well as its burden and role in disease development. The aim of this chapter is to provide an overview of the concepts and profibrotic pathways and to present the evidence that has been published in favor and against EMT and EndMT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-319-51436-9_13 | DOI Listing |
Front Immunol
January 2025
Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.
View Article and Find Full Text PDFCytotechnology
April 2025
The Second Department of General Surgery, First Affiliated Hospital of Dali University, Dali, 671000 Yunnan China.
Unlabelled: High expression of Fascin-1 involves high metastasis, high recurrence, and poor prognosis of cancers. However, the related regulatory mechanism in hepatocellular carcinoma (HCC) remains elusive. In this study, Fascin-1 was highly expressed in HCC tissues and cell lines.
View Article and Find Full Text PDFAirway stenosis (AS) is a fibroinflammatory disease characterized by abnormal activation of fibroblasts and excessive synthesis of extracellular matrix, which has puzzled many doctors despite its relatively low prevalence. Traditional treatment such as endoscopic surgery, open surgery, and adjuvant therapy have many disadvantages and are limited in the treatment of patients with recurrent AS. Therefore, it is urgent to reveal the pathogenesis of AS and accelerate its clinical transformation.
View Article and Find Full Text PDFIndian J Pathol Microbiol
January 2025
Department of Pathology, Beijing Geriatric Hospital, Beijing, China.
Background: Investigation of a potential prognostic marker expressed in non-small cell lung cancer (NSCLC) can help patients benefit from new target therapeuticmodalities.
Aims: To study the expression and correlation of P53 protein and epithelial-mesenchymal transition (EMT) related makers in NSCLC.
Materials And Methods: 32 cases were selected for immunohistochemistry analysis to evaluate the expression of P53 and EMT-related makers.
Environ Toxicol
January 2025
Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!