The Xenopus genus includes several members of aquatic frogs native to Africa but is perhaps best known for the species Xenopus laevis and Xenopus tropicalis. These species were popularized as model organisms from as early as the 1800s and have been instrumental in expanding several biological fields including cell biology, environmental toxicology, regenerative biology, and developmental biology. In fact, much of what we know about the formation and maturation of the vertebrate renal system has been acquired by examining the intricate genetic and morphological patterns that epitomize nephrogenesis in Xenopus. From these numerous reports, we have learned that the process of kidney development is as unique among organs as it is conserved among vertebrates. While development of most organs involves increases in size at a single location, development of the kidney occurs through a series of three increasingly complex nephric structures that are temporally distinct from one another and which occupy discrete spatial locales within the body. These three renal systems all serve to provide homeostatic, osmoregulatory, and excretory functions in animals. Importantly, the kidneys in amphibians, such as Xenopus, are less complex and more easily accessed than those in mammals, and thus tadpoles and frogs provide useful models for understanding our own kidney development. Several descriptive and mechanistic studies conducted with the Xenopus model system have allowed us to elucidate the cellular and molecular mediators of renal patterning and have also laid the foundation for our current understanding of kidney repair mechanisms in vertebrates. While some species-specific responses to renal injury have been observed, we still recognize the advantage of the Xenopus system due to its distinctive similarity to mammalian wound healing, reparative, and regenerative responses. In addition, the first evidence of renal regeneration in an amphibian system was recently demonstrated in Xenopus laevis. As genetic and molecular tools continue to advance, our appreciation for and utilization of this amphibian model organism can only intensify and will certainly provide ample opportunities to further our understanding of renal development and repair.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-3-319-51436-9_4 | DOI Listing |
New Phytol
January 2025
State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
In graminaceous plants, nodes play vital roles in nutrient allocation, especially for preferential nutrient distribution to developing leaves and reproductive organs. However, the molecular mechanisms underlying this distribution remain poorly understood. In this study, we identified a transporter named ZmNPF7.
View Article and Find Full Text PDFElife
January 2025
Institut de Génétique Humaine, Univ. de Montpellier, CNRS, Montpellier, France.
Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.
View Article and Find Full Text PDFJ Biochem
January 2025
Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
SN1-type alkylating reagents generate O6-methylguanine (meG) lesions that activate the mismatch repair (MMR) response. Since post-replicative MMR specifically targets the nascent strand, meG on the template strand is refractory to rectification by MMR and, therefore, can induce non-productive MMR reactions. The cycling of futile MMR attempts is proposed to cause DNA double-strand breaks in the subsequent S phase, leading to ATR-checkpoint-mediated G2 arrest and apoptosis.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018 Shandong, China.
Jasmonic acid (JA) is crucial for plant stress responses, which rely on intercellular jasmonate transport. However, JA transporters have not been fully identified, especially in tomato ( L.).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!