Diets containing high n-3 polyunsaturated fatty acids (PUFA) decrease inflammation and the incidence of chronic diseases including cardiovascular disease and nonalcoholic fatty liver disease while trans-fatty acids (TFA) intake increases the incidence of these conditions. Some health benefits of n-3 PUFA are mediated through the impact of their oxygenated metabolites, i.e. oxylipins. The TFA, trans-10, cis-12-conjugated linoleic acid (CLA; 18:2n-6) is associated with adipose tissue (AT) inflammation, oxidative stress, and wasting. We examined the impact of a 4-week feeding of 0, 0.5, and 1.5% docosahexaenoic acid (DHA; 22:6n-3) in the presence and absence of 0.5% CLA on AT oxylipin profiles in female C57BL/6N mice. Esterified oxylipins in AT derived from linoleic acid (LNA), alpha-linolenic acid (ALA), arachidonic acid (ARA), eicosapentaenoic acid (EPA), DHA, and putative from CLA were quantified. CLA containing diets reduced AT mass by ~62%. Compared with the control diet, the DHA diet elevated concentrations of EPA-and DHA-derived alcohols and epoxides and LNA-derived alcohols, reduced ARA-derived alcohols, ketones, epoxides, and 6-keto-prostaglandin (PG) F (P < 0.05), and had mixed effects on ALA-derived alcohols. Dietary CLA lowered EPA-, DHA-, and ALA-derived epoxides, ARA-derived ketones and epoxides, and ALA-derived alcohols. While dietary CLA induced variable effects in EPA-, DHA-, and LNA-derived alcohols and LNA-derived ketones, it elevated ARA-derived alcohols and PGF, PGF, and F2-isoprostanes. DHA counteracted CLA-induced effects in 67, 57, 43, and 29% of total DHA-, ARA-, EPA-, and ALA-derived oxylipins, respectively. Thus, CLA elevated proinflammatory oxylipins while DHA increased anti-inflammatory oxylipins and diminished concentration of CLA-induced pro-inflammatory oxylipins in AT.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11745-017-4252-3 | DOI Listing |
Plants (Basel)
January 2025
College of Agriculture, Hunan Agricultural University, Changsha 410128, China.
Rapeseed ( L.) is one of the four major oilseed crops in the world and is rich in fatty acids. Changes in the fatty acid composition affect the quality of rapeseed.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemical Technology, University of Plovdiv 'Paisii Hilendarski', 24 Tzar Assen Street, 4000 Plovdiv, Bulgaria.
The genus Amsonia, a member of the Apocynaceae family, comprises plants with notable medicinal benefits. In 2022 and 2023, Walt. seeds introduced to Bulgaria were collected and analyzed.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China.
Sperm motility is a key factor influencing male fertility and is associated with metabolic and lipid profiles across species. The aim of this study was to investigate the relationship between sperm motility and the seminal plasma lipid profile in Simmental bulls, and to identify key lipids potentially influencing sperm motility. Semen samples were collected from 26 healthy Simmental bulls with an average age of 4.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4780000, Chile.
Worldwide, there are reports indicating that sheep raised in insular systems spontaneously consume seaweed. In the southern hemisphere, there exists , a brown seaweed that possesses minerals and fatty acids that could improve some aspects of sheep production and meat quality, respectively. However, the consumption of this algae in lambs has been scarcely studied.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
In an established hepatocyte lipid deposition heat stress model, the expression levels of and were significantly upregulated ( < 0.05), indicating that and play important roles in the process of lipid deposition heat stress in hepatocytes. Transcriptome and metabolome analyses showed that lipid deposition heat stress had significant effects on the linoleic acid, linolenic acid, glycerophospholipid, and arachidonic acid metabolic pathways in hepatocytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!