Symmetry Does not Come for Free: Cellular Mechanisms to Achieve a Symmetric Cell Division.

Results Probl Cell Differ

Medical Faculty, Department of Physiology and Metabolism, University of Geneva, 1211, Geneva 4, Switzerland.

Published: July 2017

During mitosis cells can divide symmetrically to proliferate or asymmetrically to generate tissue diversity. While the mechanisms that ensure asymmetric cell division have been extensively studied, it is often assumed that a symmetric cell division is the default outcome of mitosis. Recent studies, however, imply that the symmetric nature of cell division is actively controlled, as they reveal numerous mechanisms that ensure the formation of equal-sized daughter cells as cells progress through cell division. Here we review our current knowledge of these mechanisms and highlight possible key questions in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-53150-2_14DOI Listing

Publication Analysis

Top Keywords

cell division
20
symmetric cell
8
mechanisms ensure
8
cell
5
division
5
symmetry free
4
free cellular
4
mechanisms
4
cellular mechanisms
4
mechanisms achieve
4

Similar Publications

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

Interactions between bacteriophages with mammalian immune cells are of great interest and most phages possess at least one molecular pattern (nucleic acid, sugar residue, or protein structure) that is recognizable to the immune system through pathogen associated molecular pattern (PAMP) receptors (i.e., TLRs).

View Article and Find Full Text PDF

RNA nanoparticles, derived from the packaging RNA three-way junction motif (pRNA-3WJ) of the bacteriophage phi29 DNA packaging motor, have been demonstrated to be thermodynamically and chemically stable, with promise as a nanodelivery system. : A previous study showed that RNA nanoparticles with antiangiogenic aptamers (anti-vascular endothelial growth factor (VEGF) and anti-angiopoietin-2 (Ang2) aptamers) inhibited cell proliferation via WST-1 assay. To further investigate the antiangiogenic potential of these RNA nanoparticles, a modified three-dimensional (3D) spheroid sprouting assay model of human umbilical vein endothelial cells was utilized in the present study.

View Article and Find Full Text PDF

The Role of Pentacyclic Triterpenoids in Non-Small Cell Lung Cancer: The Mechanisms of Action and Therapeutic Potential.

Pharmaceutics

December 2024

Division of Pulmonology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea.

Lung cancer remains a major global health problem because of its high cancer-related mortality rate despite advances in therapeutic approaches. Non-small cell lung cancer (NSCLC), a major subtype of lung cancer, is more amenable to surgical intervention in its early stages. However, the prognosis for advanced NSCLC remains poor, owing to limited treatment options.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!