Considerable attention has recently been paid to the application of chemokines to cancer immunotherapy due to their complex role in cell proliferation, invasion, metastasis, and tumorigenesis, which extends beyond the regulation of lymphocyte migration during immune responses. The expression and the function of the chemokine receptor XCR1 on breast cancer have remained elusive to date. In this study, the expressions of XCR1 mRNA were tested by quantitative real-time polymerase chain reaction in one breast epithelial cell line (MCF-10A) and nine breast cancer cell lines (MDA-MB-231, 231HM, 231BO, MDA-MB-468, MCF-7, T47D, Bcap-37, ZR-75-30, and SK-BR-3). We established XCR1-overexpressing breast cancer cell line MDA-MB-231 (231/XCR1) in XCR1 low expression cell line MDA-MB-231 (231). The ability of proliferation, invasion, and metastasis was measured by CCK8, plate cloning formation, and transwell analysis, respectively, in XCR1-overexpressing breast cancer cell lines (231/XCR1) and their parental cell line MDA-MB-231/Vector (simplified as "231/Vector"); 5×10/100 μL cells were inoculated in mammary fat pad of BALB/c nude mice. There were six BALB/c nude mice in the experimental group and control group. Protein expression was analyzed by cell immunofluorescence and Western blot. The growth of XCR1-overexpressing human breast cancer cell line MDA-MB-231 in vitro was restrained and tumorigenesis in vivo was also extenuated, its mechanism may involve in the inhibition of MAPK and PI3K/AKT/mTOR signaling pathway, but increase in LC3 expression. However, the overexpression of XCR1 in human breast cancer cell line MDA-MB-231 in vitro can promote the migration and invasion partially due to decreasing the protein level of β-catenin. Therefore, XCR1 can affect the biological characteristics of some special breast cancer cells through complex signal transduction pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5384703 | PMC |
http://dx.doi.org/10.2147/BCTT.S126184 | DOI Listing |
N Engl J Med
January 2025
University of Illinois Chicago, Chicago, IL
N Engl J Med
January 2025
From the National Surgical Adjuvant Breast and Bowel Project (NSABP) Foundation (C.E.G., E.P.M., N.W., P.R., I.L.W., A.M.B.) and University of Pittsburgh School of Medicine-UPMC Hillman Cancer Center (C.E.G., N.W., P.R., A.M.B.) - both in Pittsburgh; AGO-B and Helios Klinikum Berlin-Buch, Berlin (M.U.), the National Center for Tumor Diseases, Heidelberg University Hospital, and German Cancer Research Center, Heidelberg (A.S.), Evangelische Kliniken Gelsenkirchen, Gelsenkirchen (H.H.F.), Arbeitsgemeinschaft Gynäkologische Onkologie-Breast and Sana Klinikum Offenbach, Offenbach (C.J.), the Department of Gynecology and Obstetrics, University Hospital Erlangen, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen (P.A.F.), German Breast Group, Neu-Isenburg (P.W., S.L.), and the Center for Hematology and Oncology Bethanien, Goethe University, Frankfurt (S.L.) - all in Germany; National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan (C.-S.H.); Instituto do Câncer do Estado de São Paulo, São Paulo (M.S.M.); Orlando Health Cancer Institute, Orlando, FL (E.P.M.); Hospital Universitario La Paz-Instituto de Investigación del Hospital Universitario La Paz, Madrid (A.R.); L'Institut du Cancer de Montpellier-Val d'Aurelle, Montpellier (V.D.), Institut Bergonié, INSERM Unité 1312, and Université de Bordeaux UFR Sciences Médicales, Bordeaux (H.R.B.) - all in France; Providence Cancer Institute, Portland, OR (A.K.C.); the Department of Surgery, Oncology, and Gastroenterology, University of Padua, and Oncology 2, Istituto Oncologico Veneto IRCCS, Padua (V.G.), and the Cancer Center Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo (E.R.C.) - all in Italy; Stanford University School of Medicine, Stanford, CA (I.L.W.); the National Cancer Institute, Mexico City (C.A.-S.); Yale University School of Medicine, Yale Cancer Center, and Smilow Cancer Hospital, New Haven, CT (M.P.D.); the All-Ireland Cooperative Oncology Research Group (J.P.C.), and the Oncology Unit, Cancer Clinical Trials and Research Unit, Beaumont RCSI Cancer Centre, and Cancer Trials Ireland (B.T.H.) - all in Dublin; Fudan University Shanghai Cancer Center, Shanghai, China (Z.S.); Institute for Oncology and Radiology of Serbia, Belgrade (L.S.); Grupo Médico Ángeles, Guatemala City, Guatemala (H.C.-S.); Roche Products, Welwyn Garden City, United Kingdom (A.K., A.S.); and F. Hoffmann-La Roche, Basel, Switzerland (C.L., T.B., B.N., E.R.).
Background: Patients with human epidermal growth factor receptor 2 (HER2)-positive early breast cancer with residual invasive disease after neoadjuvant systemic therapy have a high risk of recurrence and death. The primary analysis of KATHERINE, a phase 3, open-label trial, showed that the risk of invasive breast cancer or death was 50% lower with adjuvant trastuzumab emtansine (T-DM1) than with trastuzumab alone.
Methods: We randomly assigned patients with HER2-positive early breast cancer with residual invasive disease in the breast or axilla after neoadjuvant systemic treatment with taxane-based chemotherapy and trastuzumab to receive T-DM1 or trastuzumab for 14 cycles.
AJR Am J Roentgenol
January 2025
Department of Radiology, Division of Breast Imaging and Intervention, Mayo Clinic, Phoenix, AZ.
Contrast-enhanced mammography (CEM) is growing in clinical use due to its increased sensitivity and specificity compared to full-field digital mammography (FFDM) and/or digital breast tomosynthesis (DBT), particularly in patients with dense breasts. To perform an intraindividual comparison of MGD between FFDM, DBT, a combination protocol using both FFDM and DBT (combined FFDM-DBT), and CEM, in patients undergoing breast cancer screening. This retrospective study included 389 women (median age, 57.
View Article and Find Full Text PDFSci Adv
January 2025
Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.
CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!