Vascular pathology, including blood-CNS barrier (B-CNS-B) damage via endothelial cell (EC) degeneration, is a recently recognized hallmark of Amyotrophic Lateral Sclerosis (ALS) pathogenesis. B-CNS-B repair may be a new therapeutic approach for ALS. This study aimed to determine effects of transplanted unmodified human bone marrow CD34+ (hBM34+) cells into symptomatic G93A mice towards blood-spinal cord barrier (BSCB) repair. Thirteen weeks old G93A mice intravenously received one of three different doses of hBM34+ cells. Cell-treated, media-treated, and control mice were euthanized at 17 weeks of age. Immunohistochemical (anti-human vWF, CD45, GFAP, and Iba-1) and motor neuron histological analyses were performed in cervical and lumbar spinal cords. EB levels in spinal cord parenchyma determined capillary permeability. Transplanted hBM34+ cells improved behavioral disease outcomes and enhanced motor neuron survival, mainly in high-cell-dose mice. Transplanted cells differentiated into ECs and engrafted within numerous capillaries. Reduced astrogliosis, microgliosis, and enhanced perivascular end-feet astrocytes were also determined in spinal cords, mostly in high-cell-dose mice. These mice also showed significantly decreased parenchymal EB levels. EC differentiation, capillary engraftment, reduced capillary permeability, and re-established perivascular end-feet astrocytes in symptomatic ALS mice may represent BSCB repair processes, supporting hBM34+ cell transplantation as a future therapeutic strategy for ALS patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429840 | PMC |
http://dx.doi.org/10.1038/s41598-017-00993-0 | DOI Listing |
Stem Cell Rev Rep
October 2023
Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, 33612, United States of America.
Amyotrophic lateral sclerosis (ALS) is a multifactorial disease with one of these factors being an impaired blood-spinal cord barrier (BSCB). In order to block harmful components in systemic circulation from accessing the CNS, barrier damage needs alleviation. Recently, we found that symptomatic ALS animals treated with intravenously delivered human bone marrow-derived CD34+ (hBM34+) cells or endothelial progenitor cells (hBMEPCs) showed delayed disease progression for 4 weeks post-transplant via BSCB repair.
View Article and Find Full Text PDFeNeuro
October 2021
Center of Excellence for Aging and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612.
Convincing evidence of blood-spinal cord barrier (BSCB) alterations has been demonstrated in amyotrophic lateral sclerosis (ALS) and barrier repair is imperative to prevent motor neuron dysfunction. We showed benefits of human bone marrow-derived CD34+ cells (hBM34+) and endothelial progenitor cells (hBM-EPCs) intravenous transplantation into symptomatic G93A SOD1 mutant mice on barrier reparative processes. These gains likely occurred by replacement of damaged endothelial cells, prolonging motor neuron survival.
View Article and Find Full Text PDFBrain Res Bull
May 2021
Center of Excellence for Aging and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, United States; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, United States.
Repairing the altered blood-CNS-barrier in amyotrophic lateral sclerosis (ALS) is imperative to prevent entry of detrimental blood-borne substances into the CNS. Cell transplantation with the goal of replacing damaged endothelial cells (ECs) may be a new therapeutic approach for barrier restoration. We showed positive effects of human bone marrow-derived CD34+ cells (hBM34+) and endothelial progenitor cells (hBM-EPCs) intravenous transplantation into symptomatic G93A SOD1 mutant mice on barrier reparative processes.
View Article and Find Full Text PDFSci Rep
March 2019
Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, 33612, USA.
Convincing evidence demonstrated impairment of the blood-spinal cord barrier (BSCB) in Amyotrophic Lateral Sclerosis (ALS), mainly by endothelial cell (EC) alterations. Replacing damaged ECs by cell transplantation is a potential barrier repair strategy. Recently, we showed that intravenous (iv) administration of human bone marrow CD34 (hBM34) cells into symptomatic ALS mice benefits BSCB restoration and postpones disease progression.
View Article and Find Full Text PDFExp Neurol
December 2018
Center of Excellence for Aging & Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL 33612, United States.
Accumulating evidence shows alterations in the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) in ALS patients and in animal models of disease, mainly by endothelial cell (EC) damage. Repair of the altered barrier in the CNS by replacement of ECs via cell transplantation may be a new therapeutic approach for ALS. Recently, we demonstrated positive effects towards BSCB repair by intravenous administration of unmodified human bone marrow CD34 (hBM34) cells at different doses into symptomatic ALS mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!