The ability of bacteria and fungi to communicate with each other is a remarkable aspect of the microbial world. It is recognized that volatile organic compounds (VOCs) act as communication signals, however the molecular responses by bacteria to fungal VOCs remain unknown. Here we perform transcriptomics and proteomics analyses of Serratia plymuthica PRI-2C exposed to VOCs emitted by the fungal pathogen Fusarium culmorum. We find that the bacterium responds to fungal VOCs with changes in gene and protein expression related to motility, signal transduction, energy metabolism, cell envelope biogenesis, and secondary metabolite production. Metabolomic analysis of the bacterium exposed to the fungal VOCs, gene cluster comparison, and heterologous co-expression of a terpene synthase and a methyltransferase revealed the production of the unusual terpene sodorifen in response to fungal VOCs. These results strongly suggest that VOCs are not only a metabolic waste but important compounds in the long-distance communication between fungi and bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429845PMC
http://dx.doi.org/10.1038/s41598-017-00893-3DOI Listing

Publication Analysis

Top Keywords

fungal vocs
16
secondary metabolite
8
serratia plymuthica
8
plymuthica pri-2c
8
vocs
7
fungal
6
fungal volatile
4
volatile compounds
4
compounds induce
4
induce production
4

Similar Publications

The aim of this study was to investigate the differences of quality indexes, bacterial community and volatile organic compounds (VOCs) of industrial-scale tiger skin chicken feet (TSCF) under air packaging (AP) and vacuum packaging (VP). The results showed that the pH, total volatile basic nitrogen, total number of bacterial colony, and sensory scores in VP group changed less than those in AP group during the storage period. Different packaging conditions also had significant effects on bacterial community at the genus levels.

View Article and Find Full Text PDF

The clinical diagnosis of dermatophytosis and identification of dermatophytes face challenges due to reliance on culture-based methods. Rapid, cost-effective detection techniques for volatile organic compounds (VOCs) have been developed for other microorganisms, but their application to dermatophytes is limited. This study explores using VOCs as diagnostic markers for dermatophytes.

View Article and Find Full Text PDF

Antimicrobial resistance is an ever-increasing problem for human health, and with only a few novel antimicrobials discovered in recent decades, an extraordinary effort is needed to circumvent this crisis. A promising source of new microbial-derived antimicrobial compounds resides in the large fraction of microbes that are not readily cultured by standard cultivation. It has previously been shown that nests of the social spider contain a diverse bacterial community, where only a small fraction of the microbes could be recovered by standard cultivation.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 variants of concern (VOCs) during the COVID-19 pandemic necessitates investigation into their clinical differentiation and outcomes. This study aimed to examine these differences among VOCs, considering multiple related factors. An observational cohort study was conducted on patients diagnosed with SARS-CoV-2 infection via nasopharyngeal/oropharyngeal swab who visited the emergency department of a public Greek hospital between October 2020 and July 2022 during different VOC circulation in the region.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes the envelope (E) protein of SARS-CoV-2, highlighting its importance in viral assembly, release, and overall virulence, while assessing the conservation and mutation patterns across different variants of concern (VOCs).
  • Mutations were identified in various strains, notably B.1.351 and Omicron, that could compromise the effectiveness of current diagnostic RT-PCR assays by altering the E protein's stability.
  • The research underscores the need for ongoing surveillance of viral mutations to enhance diagnostic strategies and understand the evolving nature of SARS-CoV-2.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!