Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Slow wave activity (SWA, 0.5-4 Hz) represents the predominant EEG oscillatory activity during slow wave sleep (SWS). Its amplitude is considered in part a reflection of synaptic potentiation in cortical networks due to encoding of information during prior waking, with higher amplitude indicating stronger potentiation. Previous studies showed that increasing and diminishing specific motor behaviors produced corresponding changes in SWA in the respective motor cortical areas during subsequent SWS Here, we tested whether this relationship can be generalized to the visual system, that is, whether diminishing encoding of visual information likewise leads to a localized decrease in SWA over the visual cortex. Experiments were performed in healthy men whose eyes on two different days were or were not covered for 10.5 h before bedtime. The subject's EEG was recorded during sleep and, after sleep, visual evoked potentials (VEPs) were recorded. SWA during nonrapid eye movement sleep (NonREM sleep) was lower after blindfolding than after eyes open ( < 0.01). The decrease in SWA that was most consistent during the first 20 min of NonREM sleep, did not remain restricted to visual cortex regions, with changes over frontal and parietal cortical regions being even more pronounced. In the morning after sleep, the N75-P100 peak-to-peak-amplitude of the VEP was significantly diminished in the blindfolded condition. Our findings confirm a link between reduced wake encoding and diminished SWA during ensuing NonREM sleep, although this link appears not to be restricted to sensory cortical areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392525 | PMC |
http://dx.doi.org/10.14814/phy2.13239 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!