Encodes a Glutaminase in Vitamin B Biosynthesis Essential for Maize Seed Development.

Plant Physiol

Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China (Y.-Z.Y., S.D., Y.W., C.-L.L., Y.S., B.-C.T.);

Published: June 2017

Vitamin B, an essential cofactor for a range of biochemical reactions and a potent antioxidant, plays important roles in plant growth, development, and stress tolerance. Vitamin B deficiency causes embryo lethality in Arabidopsis (), but the specific role of vitamin B biosynthesis in endosperm development has not been fully addressed, especially in monocot crops, where endosperm constitutes the major portion of the grain. Through molecular characterization of a () mutant in maize, we reveal that vitamin B has differential effects on embryogenesis and endosperm development in maize. The B vitamer pyridoxal 5'-phosphate (PLP) is drastically reduced in both the embryo and the endosperm. However, whereas embryogenesis of the mutant is arrested at the transition stage, endosperm formation is nearly normal. Cloning reveals that encodes the glutaminase subunit of the PLP synthase complex involved in vitamin B biosynthesis de novo. partially complements the Arabidopsis vitamin B-deficient mutant and pyridoxine auxotrophic mutant MML21. is constitutively expressed in the maize plant, including developing embryos. Analysis of B vitamers indicates that the endosperm accumulates a large amount of pyridoxamine 5'-phosphate (PMP). These results indicate that vitamin B is essential to embryogenesis but has a reduced role in endosperm development in maize. The vitamin B required for seed development is synthesized in the seed, and the endosperm accumulates PMP probably as a storage form of vitamin B.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462003PMC
http://dx.doi.org/10.1104/pp.16.01295DOI Listing

Publication Analysis

Top Keywords

vitamin biosynthesis
12
endosperm development
12
vitamin
10
encodes glutaminase
8
seed development
8
vitamin essential
8
endosperm
8
development maize
8
endosperm accumulates
8
development
6

Similar Publications

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

The objective of this retrospective, database study was to characterize the rate, magnitude and timeline of increases in parathyroid hormone (PTH) levels post-denosumab (DMAb) vs. zoledronic acid (ZA) injection in patients with osteoporosis and near normal baseline PTH. Included were osteoporotic females, ≥50 years, initiating treatment with 60 mg DMAb or 5 mg ZA.

View Article and Find Full Text PDF

High-throughput and sustainable B vitamins analysis in nutritional supplements, vegetables, and fruits via 2D carbon microfiber fractionation system coupled with mass spectrometry.

Talanta

January 2025

College of Pharmacy, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China; Department of Chemistry, Interdisciplinary Program of Biological Functional Molecules, College of Integration Science, Yanbian University, Park Road 977, Yanji, 133002, Jilin Province, PR China. Electronic address:

B vitamins are essential for energy metabolism, nervous health, blood production, and the immune system. Their quantification in nutritional supplements and food is mandatory to manage a correct daily intake and dosage. In this study, a fast and sustainable method for the analysis of 8 B vitamins (VB, VB, VB, nicotinamide, VB, VB, VB, VB) in real samples using a 2D-carbon microfiber fractionation system combined with a triple quadrupole mass spectrometer (2DμCFs-QqQ-MS/MS) is presented.

View Article and Find Full Text PDF

A Noncatalytic Cysteine Residue Modulates Cobalamin Reactivity in the Human B Processing Enzyme CblC.

Biochemistry

January 2025

Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg im Breisgau 79106, Germany.

Human CblC catalyzes the indispensable processing of dietary vitamin B by the removal of its β-axial ligand and an either one- or two-electron reduction of its cobalt center to yield cob(II)alamin and cob(I)alamin, respectively. Human CblC possesses five cysteine residues of an unknown function. We hypothesized that Cys149, conserved in mammals, tunes the CblC reactivity.

View Article and Find Full Text PDF

Human skin is a physical and biochemical barrier that protects the internal body from the external environment. Throughout a person's life, the skin undergoes both intrinsic and extrinsic aging, leading to microscopic and macroscopic changes in its morphology. In addition, the repair processes slow with aging, making the older population more susceptible to skin diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!