From epigenetic landscape to phenotypic fitness landscape: Evolutionary effect of pathogens on host traits.

Infect Genet Evol

Institute of Mathematical Sciences and Physics, University of the Philippines Los Baños, College, Laguna 4031, Philippines.

Published: July 2017

AI Article Synopsis

Article Abstract

The epigenetic landscape illustrates how cells differentiate through the control of gene regulatory networks. Numerous studies have investigated epigenetic gene regulation but there are limited studies on how the epigenetic landscape and the presence of pathogens influence the evolution of host traits. Here, we formulate a multistable decision-switch model involving several phenotypes with the antagonistic influence of parasitism. As expected, pathogens can drive dominant (common) phenotypes to become inferior through negative frequency-dependent selection. Furthermore, novel predictions of our model show that parasitism can steer the dynamics of phenotype specification from multistable equilibrium convergence to oscillations. This oscillatory behavior could explain pathogen-mediated epimutations and excessive phenotypic plasticity. The Red Queen dynamics also occur in certain parameter space of the model, which demonstrates winnerless cyclic phenotype-switching in hosts and in pathogens. The results of our simulations elucidate the association between the epigenetic and phenotypic fitness landscapes and how parasitism facilitates non-genetic phenotypic diversity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2017.04.006DOI Listing

Publication Analysis

Top Keywords

epigenetic landscape
12
phenotypic fitness
8
host traits
8
epigenetic
5
phenotypic
4
landscape phenotypic
4
fitness landscape
4
landscape evolutionary
4
pathogens
4
evolutionary pathogens
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!