Absence of PTHrP nuclear localization and C-terminus sequences leads to abnormal development of T cells.

Biochimie

The State Key Laboratory of Pharmaceutical Biotechnology, School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing 210093, PR China; Changzhou High-Tech Research Institute of Nanjing University and Changzhou TargetPharma Laboratories Inc., Changzhou 213164, PR China. Electronic address:

Published: July 2017

Parathyroid hormone-related protein (PTHrP), a ubiquitously expressed protein, is composed of four functional domains including N-terminus, mid region, nuclear localization signal (NLS) and C-terminus. Under the direction of NLS, PTHrP can enter cell nucleus from cytoplasm and stimulate mitogenesis. Although PTHrP is considered to have important developmental roles, the role of PTHrP NLS and C-terminus in developmental process remains unknown, especially in T-cell development. Here, we used a knock-in mouse model, which expresses a truncated form of PTHrP missing the NLS (87-107) and C-terminus (108-139) of the protein, to examine the role of PTHrP NLS and C-terminus in T-cell development. Our results showed that the truncated PTHrP (1-84) led to abnormal subpopulations, impaired proliferation and increased apoptosis in the thymus, indicating that PTHrP is involved in the development of T cells, and the NLS and C-terminus part is necessary for the normal role of PTHrP in T-cell development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biochi.2017.04.005DOI Listing

Publication Analysis

Top Keywords

nls c-terminus
16
role pthrp
12
t-cell development
12
pthrp
9
nuclear localization
8
development cells
8
pthrp nls
8
c-terminus
6
nls
6
development
5

Similar Publications

Background: Mammalian display is an appealing technology for therapeutic antibody development. Despite the advantages of mammalian display, such as full-length IgG display with mammalian glycosylation and its inherent ability to select antibodies with good biophysical properties, the restricted library size and large culture volumes remain challenges. Bxb1 serine integrase is commonly used for the stable genomic integration of antibody genes into mammalian cells, but presently lacks the efficiency required for the display of large mammalian display libraries.

View Article and Find Full Text PDF

A genetically encoded fluorescent protein sensor for mitochondrial membrane damage detection.

Biochem Biophys Res Commun

May 2024

Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. Electronic address:

Mitochondria are essential cellular organelles; detecting mitochondrial damage is crucial in cellular biology and toxicology. Compared with existing chemical probe detection methods, genetically encoded fluorescent protein sensors can directly indicate cellular and molecular events without involving exogenous reagents. In this study, we introduced a molecular sensor system, MMD-Sensor, for monitoring mitochondrial membrane damage.

View Article and Find Full Text PDF

The role of parathyroid hormone (PTH)-related protein (PTHrP) in breast cancer remains controversial, with reports of PTHrP inhibiting or promoting primary tumor growth in preclinical studies. Here, we provide insight into these conflicting findings by assessing the role of specific biological domains of PTHrP in tumor progression through stable expression of PTHrP (-36-139aa) or truncated forms with deletion of the nuclear localization sequence (NLS) alone or in combination with the C-terminus. Although the full-length PTHrP molecule (-36-139aa) did not alter tumorigenesis, PTHrP lacking the NLS alone accelerated primary tumor growth by downregulating p27, while PTHrP lacking the NLS and C-terminus repressed tumor growth through p27 induction driven by the tumor suppressor leukemia inhibitory factor receptor (LIFR).

View Article and Find Full Text PDF

Allelic variation of BBX24 is a dominant determinant controlling red coloration and dwarfism in pear.

Plant Biotechnol J

June 2024

State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, China.

Variation in anthocyanin biosynthesis in pear fruit provides genetic germplasm resources for breeding, while dwarfing is an important agronomic trait, which is beneficial to reduce the management costs and allow for the implementation of high-density cultivation. Here, we combined bulked segregant analysis (BSA), quantitative trait loci (QTL), and structural variation (SV) analysis to identify a 14-bp deletion which caused a frame shift mutation and resulted in the premature translation termination of a B-box (BBX) family of zinc transcription factor, PyBBX24, and its allelic variation termed PyBBX24. PyBBX24 overexpression promotes anthocyanin biosynthesis in pear, strawberry, Arabidopsis, tobacco, and tomato, while that of PyBBX24 did not.

View Article and Find Full Text PDF

Canonical heterotrimeric G-proteins (G-proteins) are comprised of Gα, Gβ, and Gγ subunits. G-proteins regulate multiple crucial plant growth and development processes, incorporating environmental responses. Besides Gα, Gβ and Gγ, the discovery of atypical Gα subunits termed as extra-large G-proteins or extra-large GTP-binding proteins (XLGs) makes G-protein signaling unique in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!