In this study the effect of oxalic acid (OA) treatment of artichoke plants (Cynara scolymus L.) on head artichoke development and on artichokes quality parameters (weight loss, firmness, and color), respiration rate, antioxidant activity and phenolics (measured by Folin Ciocalteu and HPLC-DAD-ESI/MS) at harvest and during storage for 21days at 2°C was evaluated. OA treatment increased the percentage of the first class artichokes although no significant effect was found in artichoke developmental process. OA-treatment reduced the respiration rate of artichokes and led to higher total hydrosoluble antioxidant activity and total phenolics and hydroxycinnamics and luteolins concentration both at harvest and during cold storage. In addition, luteolin 7-O-glucuronide 3-O-glucoside was identified for the first time in artichoke. Thus, it can be concluded that OA preharvest treatment could be a natural and useful tool to delay the artichoke postharvest senescence and improve the reported health-beneficial properties of artichokes consumption.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2017.03.051DOI Listing

Publication Analysis

Top Keywords

oxalic acid
8
cynara scolymus
8
harvest storage
8
respiration rate
8
antioxidant activity
8
artichoke
6
preharvest application
4
application oxalic
4
acid improves
4
improves quality
4

Similar Publications

Effective pretreatment of tea stem via poly-deep eutectic solvent for promoting platform molecule production and obtaining fluorescent lignin.

Int J Biol Macromol

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China. Electronic address:

In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.

View Article and Find Full Text PDF

Introduction: The misuse of antibiotics in poultry farming is a global issue.

Objective: The focus of this study was the health risk assessment of consumers from the determination of ciprofloxacin (CIP), tetracycline (TC), and oxytetracycline (OTC) in broiler chicken in the raw, frozen, and boiled stages using solid-phase extraction, high-performance liquid chromatography, and ultraviolet detection (SPE-HPLC-UV).

Materials And Methods: Chromatographic separation was achieved using 0.

View Article and Find Full Text PDF

Oxalic acid (OA), an essential pathogenic factor, has been identified in several plant pathogens, and researchers are currently pursuing studies on interference with OA metabolism as a treatment for related diseases. However, the metabolic route in remains unknown. In this study, we describe D-erythroascorbic acid-mediated OA synthesis and its metabolic and clearance pathways in rice blast fungus.

View Article and Find Full Text PDF

CO-templated [LnNi] heterometallic compounds for enhanced magnetocaloric effects at low fields.

Dalton Trans

January 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

In the history of magnetochemistry development, lanthanide-transition (3d-4f) heterometallic compounds have been considered an attractive candidate for magnetic refrigerants. Herein, a series of heterometallic compounds have been designed and templated by CO anions, that is, {[LnNi(L)(CO)(HO)]·HO} [Ln = Gd (. Gd2Ni) = Sm (.

View Article and Find Full Text PDF

Development and Assessment of a Color-Variable Chlorine Dioxide Slow-Releasing Card for Litchi Preservation.

Foods

January 2025

Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510641, China.

Chlorine dioxide (ClO) gas has attracted considerable attention due to its safety and efficiency. In this study, we successfully developed a color-variable ClO slow-releasing card for postharvest litchi. The optimal ClO slow-releasing card was prepared as follows: Card A was soaked in 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!