Mitochondria and microsomes from whole rat testis, seminiferous tubules and Leydig cells were investigated with respect to their capacity to generate superoxide anion. In addition, lipid peroxidation by whole testis mitochondria and microsomes was measured. In the presence of NADH and various respiratory inhibitors all three mitochondrial preparations catalyzed the formation of superoxide anion at a rate of 0.27-1.67 nmol/min.mg. This formation was concluded to be confined mainly to the NADH dehydrogenase region of the respiratory chain. Addition of NADPH to whole testis or Leydig cell mitochondria, but not tubule mitochondria, caused an additional formation of superoxide anion, which was unrelated to the respiratory chain, accelerated several-fold by menadione, and presumably catalyzed by NADPH-cytochrome c reductase and cytochrome P-450. Microsomes isolated from whole testis, seminiferous tubules, and Leydig cells generated superoxide anion at rates between 0.19 and 0.44 nmol/min.mg. These rates were also strongly stimulated by menadione. It is likely that both NADPH-cytochrome c reductase and cytochrome P-450 were involved in the microsomal generation of superoxide. Free radical scavengers of various types inhibited both the mitochondrial and microsomal formation of superoxide anion. Lipid peroxidation in whole testis essentially paralleled superoxide anion generation. However, the rate of mitochondrial lipid peroxidation was twice that of the microsomal rate. It is concluded that seminiferous tubules and Leydig cells generate superoxide anion at different rates and by different mechanisms. Together with cytochrome P-450-dependent hydroxylases, e.g., BP and DMBA hydroxylases, this superoxide generation may reflect a potential for cell-specific peroxidative damage in the testis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0041-008x(88)90278-5DOI Listing

Publication Analysis

Top Keywords

superoxide anion
32
lipid peroxidation
16
seminiferous tubules
12
tubules leydig
12
leydig cells
12
formation superoxide
12
superoxide
9
generation superoxide
8
anion
8
anion lipid
8

Similar Publications

is an opportunistic pathogen that causes nosocomial infections of the urinary tract, upper respiratory tract, gastrointestinal tract, central nervous system, etc. It is possible to develop bacteremia and sepsis in immunocompromised patients. A major problem in treatment is the development of antibiotic resistance.

View Article and Find Full Text PDF

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

Oxidative stress caused by reactive oxygen species (ROS) affects the aging process and increases the likelihood of several diseases. A new frontier in its prevention includes bioactive foods and natural extracts that can be introduced by the diet in combination with specific probiotics. Among the natural compounds that we can introduce by the diet, extract is one of the most utilized since it contains a vast number of bioactive molecules such as phenolic acids, flavonoids, and polysaccharides that have been shown to possess antioxidant, anti-ageing, anti-cancer, and immunomodulatory activity.

View Article and Find Full Text PDF

VDAC1: A Key Player in the Mitochondrial Landscape of Neurodegeneration.

Biomolecules

December 2024

Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel.

Voltage-Dependent Anion Channel 1 (VDAC1) is a mitochondrial outer membrane protein that plays a crucial role in regulating cellular energy metabolism and apoptosis by mediating the exchange of ions and metabolites between mitochondria and the cytosol. Mitochondrial dysfunction and oxidative stress are central features of neurodegenerative diseases. The pivotal functions of VDAC1 in controlling mitochondrial membrane permeability, regulating calcium balance, and facilitating programmed cell death pathways, position it as a key determinant in the delicate balance between neuronal viability and degeneration.

View Article and Find Full Text PDF

Glucosinolates (GSLs) are nitrogen/sulfur-containing glycosides widely present in the order of Brassicales, particularly in the Brassicaceae family. Camelina ( (L.) Crantz) is an oilseed plant belonging to this family.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!