Genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel rescues the disease phenotypes of genetic models of Parkinson's disease.

Neurobiol Aging

Department of Research, National Neuroscience Institute, Singapore, Singapore; Neuroscience & Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore; Department of Physiology, National University of Singapore, Singapore, Singapore. Electronic address:

Published: July 2017

Despite intensive research, the etiology of Parkinson's disease (PD) remains poorly understood and the disease remains incurable. However, compelling evidence gathered over decades of research strongly support a role for mitochondrial dysfunction in PD pathogenesis. Related to this, PGC-1α, a key regulator of mitochondrial biogenesis, has recently been proposed to be an attractive target for intervention in PD. Here, we showed that silencing of expression of the Drosophila PGC-1α ortholog spargel results in PD-related phenotypes in flies and also seem to negate the effects of AMPK activation, which we have previously demonstrated to be neuroprotective, that is, AMPK-mediated neuroprotection appears to require PGC-1α. Importantly, we further showed that genetic or pharmacological activation of the Drosophila PGC-1α ortholog spargel is sufficient to rescue the disease phenotypes of Parkin and LRRK2 genetic fly models of PD, thus supporting the proposed use of PGC-1α-related strategies for neuroprotection in PD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neurobiolaging.2017.03.017DOI Listing

Publication Analysis

Top Keywords

drosophila pgc-1α
12
pgc-1α ortholog
12
ortholog spargel
12
genetic pharmacological
8
pharmacological activation
8
activation drosophila
8
disease phenotypes
8
parkinson's disease
8
disease remains
8
pgc-1α
5

Similar Publications

Interorgan lipid transport is crucial for organism development and the maintenance of physiological function. Here, we demonstrate that long-chain acyl-CoA synthetase (dAcsl), which catalyzes the conversion of fatty acids into acyl-coenzyme As (acyl-CoAs), plays a critical role in regulating systemic lipid homeostasis. dAcsl deficiency in the fat body led to the ectopic accumulation of neutral lipids in the gut, along with significantly reduced lipoprotein contents in both the fat body and hemolymph.

View Article and Find Full Text PDF

Natural flavonoid glycosides Chrysosplenosides I & A rejuvenate intestinal stem cell aging via activation of PPARγ signaling.

Life Med

June 2024

Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.

The decline in intestinal stem cell (ISC) function is a hallmark of aging, contributing to compromised intestinal regeneration and increased incidence of age-associated diseases. Novel therapeutic agents that can rejuvenate aged ISCs are of paramount importance for extending healthspan. Here, we report on the discovery of Chrysosplenosides I and A (CAs 1 & 2), flavonol glycosides from the Xizang medicinal plant Maxim.

View Article and Find Full Text PDF

Sour rot (SR) is a late-season non-Botrytis rot affecting grapevines, resulting from a complex interplay of microorganisms, including non-Saccharomyces yeasts and acetic acid bacteria. Nonmicrobial factors contributing to disease development encompass vectors (e.g.

View Article and Find Full Text PDF

Molecular and functional characterization of a β-tubulin gene in Plutella xylostella.

Int J Biol Macromol

January 2025

State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China. Electronic address:

The β-tubulin gene is essential for reproductive development, especially for male fertility, in different insects including Bombyx mori and Drosophila melanogaster. Targeting reproductive genes such as β-tubulin offers a promising approach to pest control that is more sustainable than chemical pesticides. However, there is limited research on the functional role of β-tubulin in Plutella xylostella, a highly damaging pest of vegetable crops.

View Article and Find Full Text PDF

The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!