Repetitive DNA loci and their modulation by the non-canonical nucleic acid structures R-loops and G-quadruplexes.

Nucleus

a Department of Laboratory Medicine and Pathobiology , Faculty of Medicine, University of Toronto, Toronto, Ontario , Canada.

Published: March 2017

Cells have evolved intricate mechanisms to maintain genome stability despite allowing mutational changes to drive evolutionary adaptation. Repetitive DNA sequences, which represent the bulk of most genomes, are a major threat to genome stability often driving chromosome rearrangements and disease. The major source of repetitive DNA sequences and thus the most vulnerable constituents of the genome are the rDNA (rDNA) repeats, telomeres, and transposable elements. Maintaining the stability of these loci is critical to overall cellular fitness and lifespan. Therefore, cells have evolved mechanisms to regulate rDNA copy number, telomere length and transposon activity, as well as DNA repair at these loci. In addition, non-canonical structure-forming DNA motifs can also modulate the function of these repetitive DNA loci by impacting their transcription, replication, and stability. Here, we discuss key mechanisms that maintain rDNA repeats, telomeres, and transposons in yeast and human before highlighting emerging roles for non-canonical DNA structures at these repetitive loci.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5403138PMC
http://dx.doi.org/10.1080/19491034.2017.1292193DOI Listing

Publication Analysis

Top Keywords

repetitive dna
16
dna loci
8
cells evolved
8
mechanisms maintain
8
genome stability
8
dna sequences
8
rdna repeats
8
repeats telomeres
8
dna
6
repetitive
5

Similar Publications

The folding of the guanine repetitive region in the telomere unit into G-quadruplex (G4) by drugs has been suggested as an alternative approach for cancer therapy. Hydroxychloroquine (HCQ) and chloroquine (CQ) are two important drugs in the trial stage for cancer. Both drugs can induce the folding of telomere-guanine-rich sequences into G4 even in the absence of salt.

View Article and Find Full Text PDF

Cystic Echinococcosis (CE) is a zoonotic disease caused by sensu lato. Diagnosing CE primarily relies on imaging techniques, and there is a crucial need for an objective laboratory test to enhance the diagnostic process. Today, cell-free DNAs (cfDNAs) have gained importance regarding their biomarker potential.

View Article and Find Full Text PDF

The genus boasts abundant germplasm resources and comprises numerous species. Among these, medicinal plants of this genus, which have a long history, have garnered attention of scholars. This study sequenced and analyzed the chloroplast genomes of six species of medicinal plants (, , , , , and , respectively) to explore their interspecific relationships.

View Article and Find Full Text PDF

Schizophrenia is a frequent and disabling disease. The persistence of the disorder despite its harmful consequences represents an evolutionary paradox. Based on recent discoveries in genetics, scientists have formulated the "price-to-pay" hypothesis: schizophrenia would be intimately related to human evolution, particularly to brain development and human-specific higher cognitive functions.

View Article and Find Full Text PDF

Introduction: Gestational trophoblastic disease (GTD) encompasses a constellation of rare to common gynecologic conditions stemming from aberrant gestations with distinct genetic backgrounds and variable degrees of trophoblast proliferation of either neoplastic or non-neoplastic nature. GTD is categorized into hydatidiform moles and gestational trophoblastic neoplasms, and their clinical outcomes vary widely across different subtypes. Prompt and accurate diagnosis plays a pivotal role in the effective management and prognostication of patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!