Acute respiratory distress syndrome (ARDS) is characterized by severe impairment of gas exchange. Hypoxemia is mainly due to intrapulmonary shunt, whereas increased alveolar dead space explains the alteration of CO clearance. Assessment of the severity of gas exchange impairment is a requisite for the characterization of the syndrome and the evaluation of its severity. Confounding factors linked to hemodynamic status can greatly influence the relationship between the severity of lung injury and the degree of hypoxemia and/or the effects of ventilator settings on gas exchange. Apart from situations of rescue treatment, targeting optimal gas exchange in ARDS has become less of a priority compared with prevention of injury. A complex question for clinicians is to understand when improvement in oxygenation and alveolar ventilation is related to a lower degree or risk of injury for the lungs. In this regard, a full understanding of gas exchange mechanism in ARDS is imperative for individualized symptomatic support of patients with ARDS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1164/rccm.201610-2156SO | DOI Listing |
Int J Biochem Cell Biol
January 2025
Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK. Electronic address:
Lung fibrosis, including idiopathic pulmonary fibrosis (IPF), is a complex and devastating disease characterised by the progressive scarring of lung tissue leading to compromised respiratory function. Aberrantly activated fibroblasts deposit extracellular matrix components into the surrounding lung tissue, impairing lung function and capacity for gas exchange. Both genetic and epigenetic factors have been found to play a role in the pathogenesis of lung fibrosis, with emerging evidence highlighting the interplay between these two regulatory mechanisms.
View Article and Find Full Text PDFSmall
January 2025
Center of Nanomaterials for Renewable Energy (CNRE), State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China.
The traditional perfluorosulfonic acid proton exchange membrane is crucial for proton exchange membrane fuel cells, but its high cost has impeded broader commercialization. In this study, a novel concept of a cost-effective and stable vertically aligned polydopamine-intercalated montmorillonite membrane (VAPMM) is introduced. 2D nanochannels formed within the lamellar structure of polydopamine-coated montmorillonite nanosheets provide a significant stable in-plane proton conductivity of 0.
View Article and Find Full Text PDFPlant Biol (Stuttg)
January 2025
Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, China.
Plants with the C photosynthetic pathway can withstand water stress better than plants with C metabolism. However, it is unclear whether C photosynthesis can be preliminarily activated in droughted cotton leaves, and if this contributes to increase in water use efficiency (WUE). An upland cotton (Gossypium hirsutum L.
View Article and Find Full Text PDFFront Plant Sci
January 2025
CSIRO, Glen Osmond, Adelaide, SA, Australia.
Improving crop salinity management requires enhanced understanding of salinity responses of leaf and fine-root traits governing resource acquisition, ideally in relation to ion accumulation at intra- or inter-specific levels. We hypothesized that these responses are coupled towards integrated resource conservation for plants under prolonged salt treatment. We tested the hypothesis with a glasshouse experiment on saplings of six contrasting hybrids, subjected to either control or salt treatment (reverse osmosis water versus 3.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, 832003, China.
Plants commonly undergo leaf morphoanatomy and composition modifications to cope with drought stress, and these tend to reduce mesophyll conductance to CO2 diffusion (gm), a key limitation to photosynthesis. The cell wall appears to play a crucial role in this reduction, yet the specific effect of cell wall compositions on gm and the underlying regulatory mechanisms of cell wall thickness (Tcw) variation are not well understood. In this study, we subjected cotton plants to varying levels of water deficit to investigate the impact of leaf cell wall composition and the arrangement patterns of microfibrils within cell walls on Tcw and leaf gas exchange.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!