Motivational and hedonic impairments are core features of a variety of types of psychopathology. An important aspect of motivational function is reinforcement learning (RL), including implicit (i.e., outside of conscious awareness) and explicit (i.e., including explicit representations about potential reward associations) learning, as well as both positive reinforcement (learning about actions that lead to reward) and punishment (learning to avoid actions that lead to loss). Here we present data from paradigms designed to assess both positive and negative components of both implicit and explicit RL, examine performance on each of these tasks among individuals with schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis, and examine their relative relationships to specific symptom domains transdiagnostically. None of the diagnostic groups differed significantly from controls on the implicit RL tasks in either bias toward a rewarded response or bias away from a punished response. However, on the explicit RL task, both the individuals with schizophrenia and schizoaffective disorder performed significantly worse than controls, but the individuals with bipolar did not. Worse performance on the explicit RL task, but not the implicit RL task, was related to worse motivation and pleasure symptoms across all diagnostic categories. Performance on explicit RL, but not implicit RL, was related to working memory, which accounted for some of the diagnostic group differences. However, working memory did not account for the relationship of explicit RL to motivation and pleasure symptoms. These findings suggest transdiagnostic relationships across the spectrum of psychotic disorders between motivation and pleasure impairments and explicit RL. (PsycINFO Database Record

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5503766PMC
http://dx.doi.org/10.1037/abn0000259DOI Listing

Publication Analysis

Top Keywords

reinforcement learning
12
motivation pleasure
12
explicit
9
explicit implicit
8
actions lead
8
individuals schizophrenia
8
schizophrenia schizoaffective
8
schizoaffective disorder
8
explicit task
8
performance explicit
8

Similar Publications

This survey explores the transformative impact of foundation models (FMs) in artificial intelligence, focusing on their integration with federated learning (FL) in biomedical research. Foundation models such as ChatGPT, LLaMa, and CLIP, which are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback, represent significant advancements in machine learning. These models, with their ability to generate coherent text and realistic images, are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions.

View Article and Find Full Text PDF

Introduction to Artificial Intelligence (AI) and Machine Learning (ML) in Pathology & Medicine: Generative & Non-Generative AI Basics.

Mod Pathol

January 2025

Department of Pathology, University of Pittsburgh Medical Center, PA, USA; Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. Electronic address:

This manuscript serves as an introduction to a comprehensive seven-part review article series on artificial intelligence (AI) and machine learning (ML) and their current and future influence within pathology and medicine. This introductory review provides a comprehensive grasp of this fast-expanding realm and its potential to transform medical diagnosis, workflow, research, and education. Fundamental terminology employed in AI-ML is covered using an extensive dictionary.

View Article and Find Full Text PDF

Ventriculoperitoneal shunt (VPS) insertion is a neurosurgical procedure done routinely for managing hydrocephalus. However, the technique of shunt insertion remains controversial. In this study, we retrospectively compared the accuracy of shunt placement using ultrasound (US) guidance to freehand insertion.

View Article and Find Full Text PDF

The current research introduces a model-free ultra-local model (MFULM) controller that utilizes the multi-agent on-policy reinforcement learning (MAOPRL) technique for remotely regulating blood pressure through precise drug dosing in a closed-loop system. Within the closed-loop system, there exists a MFULM controller, an observer, and an intelligent MAOPRL algorithm. Initially, a flexible MFULM controller is created to make adjustments to blood pressure and medication dosages.

View Article and Find Full Text PDF

Utilizing UAV and orthophoto data with bathymetric LiDAR in google earth engine for coastal cliff degradation assessment.

Sci Rep

January 2025

Department of Geomorphology and Quaternary Geology, Faculty of Oceanography and Geography, University of Gdańsk, Bażyńskiego 4, 80-952, Gdańsk, Poland.

This study introduces a novel methodology for estimating and analysing coastal cliff degradation, using machine learning and remote sensing data. Degradation refers to both natural abrasive processes and damage to coastal reinforcement structures caused by natural events. We utilized orthophotos and LiDAR data in green and near-infrared wavelengths to identify zones impacted by storms and extreme weather events that initiated mass movement processes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!