Origin of Remarkably Different Acidity of Hydroxycoumarins-Joint Experimental and Theoretical Studies.

J Phys Chem B

Faculty of Chemistry, Department of Theoretical Chemistry, Jagiellonian University in Kraków, Ingardena 3, 30-060 Kraków, Poland.

Published: May 2017

In the present work the origin of highly varied acidity of hydroxycoumarins (pK values) has been for the first time investigated by joint experimental and computational studies. The structurally simple regio-isomers differing in the location of hydroxyl group, 3-hydroxycoumarin (3-HC), 4-hydroxycoumarin (4-HC), 6-hydroxycoumarin (6-HC), 7-hydroxycoumarin (7-HC), as well as 4,7-dihydroxycoumarin (4,7-HC) and the larger 4-hydroxycoumarin-based derivatives: warfarin (WAR), 7-hydroxywarfarin (W7), coumatetralyl (CT), and 10-hydroxywarfarin (W10), have been compared in terms of enthalpy-entropy relationships accounting for the observed pK values. We have revealed that in the case of large molecules the acidic proton is stabilized by the following noncovalent interactions OH···O (WAR and W7), OH···π (CT), and OH···OH···O (W10), this effect leads to a compensatory enthalpy-entropy relation and yields a moderate pK increase. On the other hand, different location of the hydroxyl group in the regio-isomers (3-HC, 4-HC, 6-HC, and 7-HC) leads to the massive changes in acidity due to a lack of enthalpy-entropy compensation. Our results suggest that the solvent-solute interactions and electron delocalization degree in anions contribute to the observed behaviors. Such knowledge can be useful in the future to design novel systems exhibiting desired acid-base properties, and to elucidate enthalpy-entropy compensation phenomena.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.7b01849DOI Listing

Publication Analysis

Top Keywords

location hydroxyl
8
hydroxyl group
8
enthalpy-entropy compensation
8
origin remarkably
4
remarkably acidity
4
acidity hydroxycoumarins-joint
4
hydroxycoumarins-joint experimental
4
experimental theoretical
4
theoretical studies
4
studies work
4

Similar Publications

The Cu site in particulate methane monooxygenase may be used to produce hydrogen peroxide.

Dalton Trans

January 2025

Department of Computational Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.

Particulate methane monooxygenase (pMMO) is the most efficient of the two groups of enzymes that can hydroxylate methane. The enzyme is membrane bound and therefore hard to study experimentally. For that reason, there is still no consensus regarding the location and nature of the active site.

View Article and Find Full Text PDF

Enzymatic ester bond formation strategies in fungal macrolide skeletons.

Nat Prod Rep

January 2025

College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.

Covering: up to August 2024Macrolides, the core skeletons of numerous marketed drugs and bioactive natural products, have garnered considerable scientific interest owing to their structural diversity and broad spectrum of pharmaceutical activities. The formation of intramolecular ester bonds is a critical biocatalytic step in constructing macrolide skeletons. Here, we summarised enzymatic ester bond formation strategies in fungal polyketide (PK)-type, nonribosomal peptide (NRP)-type, and PK-NRP hybrid-type macrolides.

View Article and Find Full Text PDF

Tyrosine-modified tilapia skin antioxidant peptides and their hydroxyl radical quenching activities.

J Mater Chem B

January 2025

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.

In an antioxidant peptide study, the number and position of active amino acid sites, as well as the peptides' conformation, are found to be crucial for scavenging hydroxyl radicals (˙OH). Herein, ˙the OH scavenging activity of tilapia pentapeptide (P1, YGDQY) and its analogs including P2 (YYYGDQY), P3 (YYGDQYY) and P4 (YYGPDQYY) was investigated. The results showed that the tyrosine's amount, location and the peptides' conformation played important roles in determining peptides' scavenging activity (34.

View Article and Find Full Text PDF

The ZSM-5 zeolite is the key active component in high-severity fluid catalytic cracking (FCC) catalysts and is routinely activated by phosphorus compounds in industrial production. To date, however, the detailed structure and function of the introduced phosphorus still remain ambiguous, which hampers the rational design of highly efficient catalysts. In this work, using advanced solid-state NMR techniques, we have quantitatively identified a total of seven types of P-containing complexes in P-modified ZSM-5 zeolite and clearly revealed their structure, location, and catalytic role.

View Article and Find Full Text PDF

A complementary experimental and computational study on methanol adsorption isotherms of H-ZSM-5.

Phys Chem Chem Phys

January 2025

UK Catalysis Hub, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, OX11 0FA, UK.

Methanol adsorption isotherms of fresh f-ZSM-5 and steamed s-ZSM-5 (Si/Al ≈ 40) are investigated experimentally at room temperature under equilibrium and by grand canonical Monte Carlo (GCMC) simulations with the aim of understanding the adsorption capacity, geometry and sites as a function of steam treatment (at 573 K for 24 h). Methanol adsorption energies calculated by GCMC are complemented by density functional theory (DFT) employing both periodic and quantum mechanics/molecular mechanics (QM/MM) techniques. Physical and textural properties of f-ZSM-5 and s-ZSM-5 are characterised by diffuse reflectance infrared Fourier transformed spectroscopy (DRIFTS) and N-physisorption, which form a basis to construct models for f-ZSM-5 and s-ZSM-5 to simulate methanol adsorption isotherms by GCMC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!