Microwave-Mediated Synthesis of Bulky Lanthanide Porphyrin-Phthalocyanine Triple-Deckers: Electrochemical and Magnetic Properties.

Inorg Chem

Aix Marseille University, CNRS UMR 7313, Centrale Marseille, Institut des Sciences Moléculaires de Marseille, Chirosciences, Service 442, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France.

Published: May 2017

Five heteroleptic lanthanide porphyrin-bis-phthalocyanine triple-decker complexes with bulky peripheral groups were prepared via microwave-assisted synthesis and characterized in terms of their spectroscopic, electrochemical, and magnetic properties. These compounds, which were easily obtained under our preparative conditions, would normally not be accessible in large quantities using conventional synthetic methods, as a result of the low yield resulting from steric congestion of bulky groups on the periphery of the phthalocyanine and porphyrin ligands. The electrochemically investigated triple-decker derivatives undergo four reversible one-electron oxidations and three reversible one-electron reductions. The sites of oxidation and reduction were assigned on the basis of redox potentials and UV-vis spectral changes during electron-transfer processes monitored by thin-layer spectroelectrochemistry, in conjunction with assignments of electronic absorption bands of the neutral compounds. Magnetic susceptibility measurements on two derivatives containing Tb and Dy metal ions reveal the presence of ferromagnetic interactions, probably resulting from magnetic dipolar interactions. The Tb derivative shows SMM behavior under an applied field of 0.1 T, where the direct and Orbach process can be determined, resulting in an energy barrier of U = 132.0 K. However, Cole-Cole plots reveal the presence of two relaxation processes, the second of which takes place at higher frequencies, with the data conforming to a 1/t ∝ T relation, thus suggesting that it can be assigned to a Raman process. Attempts were made to form two-dimensional (2D) self-assembled networks on a highly oriented pyrolytic graphite (HOPG) surface but were unsuccessful due to bulky peripheral groups on the two Pc macrocycles.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.6b03056DOI Listing

Publication Analysis

Top Keywords

electrochemical magnetic
8
magnetic properties
8
bulky peripheral
8
peripheral groups
8
reversible one-electron
8
reveal presence
8
microwave-mediated synthesis
4
bulky
4
synthesis bulky
4
bulky lanthanide
4

Similar Publications

Defects Calculation and Accelerated Interfacial Charge Transfer in a Photoactive MOF-Based Heterojunction.

Small

January 2025

Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Anhui University, Hefei, Anhui, 230601, P. R. China.

Photocatalytic hydrogen production is currently considered a clean and sustainable route to meet the energy and environmental issues. Among, heterojunction photocatalysts have been developed to improve their photocatalytic efficiency. Defect engineering of heterojunction photocatalysts is attractive due to it can perform as electron trap and change the band structure to optimize the interfacial separation rate of photogenerated electron-hole pairs.

View Article and Find Full Text PDF

Paddlewheel-type and half-paddlewheel-type diruthenium(II,II) complexes with 1,8-naphthyridine-2-carboxylate.

Dalton Trans

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.

Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).

View Article and Find Full Text PDF

Rapid Synthesis of Carbon-Supported Ru-RuO₂ Heterostructures for Efficient Electrochemical Water Splitting.

Adv Sci (Weinh)

January 2025

Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA.

Development of high-performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one-step production of Ru-RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott-Schottky heterojunctions significantly enhances charge transfer across the Ru-RuO interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH.

View Article and Find Full Text PDF

Tungsten bronze oxides have emerged as attractive materials for energy storage owing to their fast charge-discharge property. However, the internal weakness of low capacity and short cycling performance impedes their development in wide application. In this work, the tungsten bronze WNbO nanorods with preferred orientation (001) were prepared by hydrothermal method for the first time.

View Article and Find Full Text PDF

Unlabelled: Ongoing research in biosensor technologies has led to advanced functional materials for healthcare diagnostics, and bacteriophages (phages), demonstrating exceptional utility due to their high specificity, accuracy, rapid, label-free, and wireless detection capabilities with minimal false-positive results. Phage-based-pathogen-detecting biosensors (PBPDBs) include surface plasmon resonance (SPR) biosensors, magnetoelastic (ME), electrochemical, and quartz crystal microbalance (QCM) biosensors. Commonly used substrates for PBPDBs are gold, silicon, glass, carbon-based materials, magnetic particles, and quantum dots.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!