AI Article Synopsis

  • Yeast cells have a negative surface potential due to their cell membrane's negative charges, leading to higher local concentrations of cations at the membrane.
  • A new method was developed to measure local pH at the cell membrane surface, which relates to the cell's surface potential, using a specific pH reporter in yeast cells.
  • The study found that the pH at the yeast cell surface was around two units lower than the surrounding medium, and this pH difference decreased when the ionic strength of the medium increased; the estimated cell surface potential was about -130 mV.

Article Abstract

Yeast cells exhibit a negative surface potential due to negative charges at the cell membrane surface. Consequently, local concentrations of cations at the periplasmic membrane surface may be significantly increased compared to their bulk environment. However, in cell suspensions only bulk concentrations of cations can be measured directly. Here we present a novel method enabling the assessment of local pH at the periplasmic membrane surface which can be directly related to the underlying cell surface potential. In this proof of concept study using Saccharomyces cerevisiae cells with episomally expressed pH reporter, pHluorin, intracellular acidification induced by the addition of the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) was measured using synchronously scanned fluorescence spectroscopy (SSF). The analysis of titration curves revealed that the pH at the periplasmic surface of S. cerevisiae cells was about two units lower than the pH of bulk medium. This pH difference was significantly decreased by increasing the ionic strength of the bulk medium. The cell surface potential was estimated to amount to -130 mV. Comparable results were obtained also with another protonophore, pentachlorophenol (PCP).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10863-017-9710-3DOI Listing

Publication Analysis

Top Keywords

surface potential
16
cell surface
12
membrane surface
12
novel method
8
assessment local
8
local periplasmic
8
surface
8
concentrations cations
8
periplasmic membrane
8
cerevisiae cells
8

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

Fabrication of Ag based Surface Enhanced Raman Scattering substrates with periodic mask arrays by electron beam deposition.

Anal Chim Acta

February 2025

Engineering Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, No.516 Jungong Road, Shanghai, 200093, China.

Background: Surface-enhanced Raman scattering (SERS) has attracted much attention as a powerful detection and analysis tool with high sensitivity and fast detection speed. The intensity of the SERS signal mainly depended on the highly enhanced electromagnetic field of nanostructure near the substrate. However, the fabrication of high-quality SERS nanostructured substrates is usually complicated, makes many methods unsuitable for large-scale production of SERS substrates.

View Article and Find Full Text PDF

VG@nAu-based fluorescent biosensor for grading Alzheimer's disease by detecting P-tau181 protein in clinical samples.

Anal Chim Acta

February 2025

Institute for Advanced Study (IAS), College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, China. Electronic address:

Background: Alzheimer's disease (AD) is a neurodegenerative disorder with a very long duration, posing a serious threat to people's life and health. To date, no medicine that can cure or reverse the disease has been developed or reported, so early diagnosis and timely intervention are essential. The concentration of Phosphorylated tau181 (P-tau181) in blood has been approved by FDA as a standard for assisting clinical diagnosis of AD.

View Article and Find Full Text PDF

Gold nanorod in silver tetrahedron: Cysteamine mediated synthesis of SERS probes with embedded internal markers for AFP detection.

Anal Chim Acta

February 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 Xianning West Road, Xi'an, 710049, China. Electronic address:

Background: Plasmonic core-shell nanostructures with embedded internal markers used as Raman probes have attracted great attention in surface-enhanced Raman scattering (SERS) immunoassay for cancer biomarkers due to their excellent uniform enhancement. However, current core-shell nanostructures typically exhibit a spherical shape and are coated with a gold shell, resulting in constrained local field enhancement.

Results: In this work, we prepared a core-shell AuNR@BDT@Ag structure by depositing silver on the surface of Raman reporter-modified gold nanorods (AuNR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!