Tradescantia fluminensis is an invasive weed and a serious threat to native forests in eastern Australia and New Zealand. Current methods of eradication are often ineffective, so understanding the growth mechanisms of Tradescantia is important in formulating better control strategies. We present a partial differential equation (PDE) model for Tradescantia growth and spatial proliferation that accounts for Tradescantia's particular creeping and branching morphology, and the impact of self-shading on plant growth. This is the first PDE model to represent a weed that spreads via a creeping growth habit rather than by seed dispersal. We use a travelling wave analysis to investigate how Tradescantia extends to colonise new territory. Numerical simulations and analysis show that the model provides a good qualitative representation of the behaviour of this plant. This model provides a foundation for assessing different control and eradication strategies for Tradescantia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11538-017-0280-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!