Background: The aim of the study was to evaluate the performance of different newly developed and/or commercially available ELISAs for detection of PRRSV specific antibodies. Consequently, ten PRRSV negative piglets (group V) were vaccinated with a PRRSV type 2 vaccine. Blood samples were taken before as well as seven, 21 and 42 days after vaccination. At day 42 after vaccination (day 0 of the study) all of the piglets from group V and 10 non-prevaccinated PRRSV negative piglets (group N) were challenged with an HP PRRSV type 2 field strain. Blood samples were taken before and at days 3, 7, 10, 14, 21 and 28 after challenge. The success of vaccination and challenge was measured with RT qPCR. All serum samples were tested with six ELISAs for detection of PRRSV antibodies. Three of them are nucleocapsid-based, two use a glycoprotein extract and one uses inactivated whole virus as antigen. The specificity of the ELISAs was evaluated using 301 serum samples of piglets from PRRSV negative herds.
Results: The piglets from group V tested positive by RT qPCR at day 7 after vaccination and all piglets tested positive at day 3 after challenge. PRRSV specific antibodies were seen with all nucleocapsid-based ELISAs from day 21 after vaccination onwards in group V and from day 10 after challenge in group N. The glycoprotein-based ELISAs detected antibodies from day 42 after vaccination (group V) and day 21 after challenge (group N). The agreement according to kappa-coefficient was almost perfect. The glycoprotein-based ELISAs were able to distinguish PRRSV type 2, although with some cross reactions. Regarding specificity, the ELISAs performed differently (specificity between 97.4 % and 100 %), whereas most of the ELISAs with higher sensitivity had a slightly lower specificity.
Conclusions: All tested ELISA were able to detect PRRSV antibodies in the serum of pigs vaccinated with a PRRSV type 2 vaccine and after challenge with an HP PRRSV type 2 field strain. The onset on antibody detection differed, depending on the type of antigen used in the ELISAs. Most of the ELISAs with a higher sensitivity had a lower specificity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5382508 | PMC |
http://dx.doi.org/10.1186/s40813-015-0015-9 | DOI Listing |
mSphere
January 2025
Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA.
Existing genetic classification systems for porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), such as restriction fragment length polymorphisms and sub-lineages, are unreliable indicators of close genetic relatedness or lack sufficient resolution for epidemiological monitoring routinely conducted by veterinarians. Here, we outline a fine-scale classification system for PRRSV-2 genetic variants in the United States. Based on >25,000 U.
View Article and Find Full Text PDFVet Res
January 2025
Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses in the swine industry. However, the molecular mechanisms behind the common and cell type-specific systemic responses during PRRS virus (PRRSV) infection are not well understood. In this study, we collected viremia data, antibody levels, and whole-blood RNA-seq data obtained from eight PRRSV-infected piglets.
View Article and Find Full Text PDFVet Microbiol
January 2025
Key Laboratory of Livestock and Poultry Multi-omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China. Electronic address:
Porcine reproductive and respiratory syndrome virus (PRRSV) has become one of the most economically important diseases to the global pig industry. RNase L is a ubiquitous cellular endoribonuclease that is activated upon the binding of a specific ligand, 2',5'-linked oligoadenylates (2-5 A), which is synthesized by oligoadenylate synthetases (OASs). However, whether Sus scrofa RNase L (sRNase L) could inhibit PRRSV replication and its mechanism have not been fully elucidated.
View Article and Find Full Text PDFVet Microbiol
February 2025
Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States. Electronic address:
Porcine reproductive and respiratory syndrome (PRRS), caused by the highly variable PRRS virus (PRRSV), presents a significant challenge to the swine industry due to its pathogenic and economic burden. The virus evades host immune responses, particularly interferon (IFN) signaling, through various viral mechanisms. Traditional vaccines have shown variable efficacy in the field, prompting the exploration of novel vaccination strategies.
View Article and Find Full Text PDFAm J Vet Res
January 2025
Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
Objective: To determine the predictive potential of the open reading frame 5 nucleotide sequence of porcine reproductive and respiratory syndrome (PRRS) virus and the basic demographic data on the severity of the impact on selected production parameters during clinical PRRS outbreaks in Ontario sow herds.
Methods: A retrospective longitudinal study of clinical outbreaks in Ontario sow herds at various points between September 5, 2009, and February 5, 2019, was conducted using herds as units of analysis. Data were gathered from study sow farms in Ontario at the start of each clinical outbreak.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!