AI Article Synopsis

  • Green roofs offer ecosystem services through processes like evapotranspiration and nutrient cycling, influenced by plant species, substrate type, and depth.
  • In a pot experiment with 20 plant species across different substrate types (natural vs. artificial) and depths (10 cm vs. 30 cm), researchers found that these factors significantly impacted biomass production, water retention, and nutrient leaching.
  • The study concluded that there's no optimal combination of factors that maximizes all ecosystem functions, revealing trade-offs and emphasizing the importance of substrate type and depth in the multifunctionality of green roofs.

Article Abstract

Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383477PMC
http://dx.doi.org/10.1002/ece3.2691DOI Listing

Publication Analysis

Top Keywords

ecosystem functions
20
substrate type
16
green roof
12
plant species
12
water retention
12
type depth
12
natural soils
12
substrate
11
species substrate
8
substrate depth
8

Similar Publications

Effects of storage durations on flavour and bacterial communities in Liupao tea.

Food Chem

December 2024

Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China.

Long-term storage of Liupao tea is conducive to improving its flavour and commercial value. Although bacterial communities influence Liupao tea flavour, their impact during storage remains unclear. The aroma compounds and bacterial communities were determined by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and Illumina Nova6000 analysis.

View Article and Find Full Text PDF

As one of their key regulatory ecosystem functions, inland lakes serve as CO sinks. The CO sink capacity of inland lakes depends on their water temperature and salinity as well as their water volume which are all highly sensitive to climate conditions. This paper aims to quantitatively estimate the change in the CO sink capacity of Wadi El-Rayan Lakes under climate change scenarios.

View Article and Find Full Text PDF

Biotic factors shape the structure and dynamics of denitrifying communities within cyanobacterial aggregates.

Environ Res

January 2025

Shanghai Key Lab for Urban Ecological Processes and Eco-Restorations, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China; Center for Global Change and Ecological Forecasting, Institute of Eco-Chongming, Shanghai, China. Electronic address:

Eutrophication caused by human activities has severely impacted freshwater ecosystems, leading to harmful cyanobacterial blooms that threaten water quality and ecosystem stability. During blooms, denitrification is a key process for nitrogen removal, which can occur both in the sediment and in the waterbody mediated by cyanobacterial aggregate (CA)-associated microorganisms. In this study, the structure, dynamics and assembly mechanisms of CA-associated nirK-, nirS-, and nosZ-encoding denitrifying communities were investigated in the eutrophic Lake Taihu across the bloom season.

View Article and Find Full Text PDF

Polystyrene microplastics exhibit toxic effects on the widespread coral symbiotic Cladocopium goreaui.

Environ Res

January 2025

Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, 530004, China.

Within the coral reef habitat, members of the Symbiodiniaceae family stand as pivotal symbionts for reef-building corals. However, the physiological response of Symbiodiniaceae on microplastics are still poorly understood. Research conducted in this investigation assessed the harmful impact of polystyrene microparticles (PS-MPs) on Cladocopium goreaui, a Symbiodiniaceae species with a broad distribution.

View Article and Find Full Text PDF

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!