Dural arteriovenous fistula as a treatable dementia.

Proc (Bayl Univ Med Cent)

Department of Radiology (Thacker) and the Division of Neurology, Department of Internal Medicine (Shamim), Baylor University Medical Center at Dallas.

Published: April 2017

Dementia is a chronic loss of neurocognitive function that is progressive and irreversible. Although rare, dural arteriovenous fistulas (DAVFs) could present with a rapid decline in neurocognitive function with or without Parkinson-like symptoms. DAVFs represent a potentially treatable and reversible cause of dementia. Here, we report the case of an elderly woman diagnosed with a DAVF after presenting with new-onset seizures, deteriorating neurocognitive function, and Parkinson-like symptoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5349834PMC
http://dx.doi.org/10.1080/08998280.2017.11929592DOI Listing

Publication Analysis

Top Keywords

neurocognitive function
12
dural arteriovenous
8
function parkinson-like
8
parkinson-like symptoms
8
arteriovenous fistula
4
fistula treatable
4
treatable dementia
4
dementia dementia
4
dementia chronic
4
chronic loss
4

Similar Publications

Perioperative neurocognitive disorders (PND) is a common complication affecting the central nervous system, commonly induced by anesthesia and surgical procedures. PND has garnered considerable attention in recent years, not only due to its high morbidity but also its negative impact on patient prognosis, such as increased rates of dementia and mortality. Sevoflurane, a common volatile anesthetic in clinical practice, is increasingly linked to being a potential risk factor for PND with prolonged inhalation, yet effective prevention and treatment methods remain elusive.

View Article and Find Full Text PDF

Mathematics learning disorders (MD) and reading learning disorders (RD) are persistent conditions that interfere with success in academic and daily-life tasks, and cannot be attributed to intellectual disabilities, sensory deficits, or environmental factors. Prevalence rates of MD and RD are estimated at 5-10 % of school-age children, and their comorbidity (MDRD) is highly prevalent, with around 40 % of children with MD also experiencing RD. Despite this high comorbidity rate, research on MDRD has received less attention compared to isolated conditions, leaving its neurocognitive mechanisms unclear.

View Article and Find Full Text PDF

Lycium barbarum glycopeptide ameliorates aging phenotypes and enhances cardiac metabolism by activating the PINK1/Parkin-mediated mitophagy pathway in D-galactose-induced mice.

Exp Gerontol

January 2025

Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China; Zhuhai Institute of Jinan University, Zhuhai 519070, China. Electronic address:

Background: Aging is a complex biological process that disrupts tissue structure and impairs physiological function, which contributes to the development of age-related diseases such as cardiovascular disorders. However, effective treatment strategies are lacking.

Objective: To investigate the geroprotective effects of Lycium barbarum glycopeptide (LbGp) and its potential mechanisms in a D-galactose-induced accelerated aging mouse model.

View Article and Find Full Text PDF

Background: Perioperative Neurocognitive Disorders (PND) are associated withanesthesia and surgery, especially in the elderly. Astrocyte activation in old mice correlates with PND development. These cells can switch to a pro-inflammatory or an anti-inflammatory phenotype, regulated by the STAT3 pathway.

View Article and Find Full Text PDF

HIV-associated neurocognitive disorders (HAND) and viral reservoirs in the brain remain a significant challenge. Despite their importance, the mechanisms allowing HIV-1 entry and replication in the central nervous system (CNS) are poorly understood. Here, we show that α-synuclein and (to a lesser extent) Aβ fibrils associated with neurological diseases enhance HIV-1 entry and replication in human T cells, macrophages, and microglia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!