Rho GTPases family members influenced the filopodia, lamellipodia, stress fiber and adhesion plaque of melanoma cells through regulating cytoskeleton recombination. The role of Rho GTPases family in the migration and invasion of melanoma and its molecular mechanism were explored. The morphological difference between three types of melanoma cells (M14, A375 and MV3) and human melanocyte (MC) was observed by the Hoffman microscope. Cells were stained by phalloidin labeled by rhodamine. The differences between 4 types of cells in filopodia, lamellipodia, stress fiber and adhesion plaque (microfilament is the main constituent) were observed under the super-high resolution microscope. The migration ability of 4 types of cells was detected by Transwell migration assay. QPCR was used to detect the mRNA transcription level of Rho GTPases family. WB was adopted to detect the expression of RhoD and DIAPH2 proteins. There were significant differences in filopodia, lamellipodia, stress fiber and adhesion plaque between MC and 3 types of melanoma cells (M14, A375 and MV3). MC did not have stress fiber or adhesion plaque, while M14, A375 and MV3 had stress fiber and adhesion plaque. All 4 types of cells had thin and short filopodia. MV3 had fewer but thicker stress fibers than the latter two. Transwell migration test indicated the followings: M14 and A375 had a similar high migration rate; the migration rate of MV3 was slightly low; MC did not have the ability of transmembrane migration. QPCR results of Rho GTPases family in 4 types of cells showed the change corresponding to immunofluorescence. WB results showed that RhoD was barely expressed in M14, A375 or MV3. DIAPH2, the downstream effector molecule of RhoD, had the corresponding change. Rho GTPases influences the migration and invasion of melanoma cells through regulating filopodia, lamellipodia, stress fiber and adhesion plaque (microfilament is the main constituent).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5444730 | PMC |
http://dx.doi.org/10.18632/oncotarget.15618 | DOI Listing |
Cardiovasc Res
January 2025
Department of Pharmacology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
Aims: Dedicator of Cytokinesis 2 (DOCK2), a member of the DOCK family of Guanine nucleotide exchange factors that specifically act on the Rho GTPases including Rac and Cdc42, plays pivotal roles in the regulation of leukocyte homeostasis. However, its functions in platelets remain unknown.
Methods And Results: Using mice with genetic deficiency of DOCK2 (Dock2-/-), we showed that Dock2-/-mice exhibited a macrothrombocytopenic phenotype characterized as decreased platelet count and enlarged platelet size by transmission electron microscopy.
Mol Genet Genomic Med
January 2025
Department of Pediatrics, Taihe County People's Hospital, Fuyang, Anhui, China.
Background: Developmental and epileptic encephalopathies (DEEs) are a heterogeneous group of brain disorders. Variants in the Rho-related BTB domain-containing 2 gene (RHOBTB2) can lead to DEE64, which is characterized by early-onset epilepsy, varying degrees of motor developmental delay and intellectual disability, microcephaly, and movement disorders. More than half of the variants are located at Arg483 and Arg511 within the BTB domain; however, the underlying mechanism of action of these hotspot variants remains unexplored.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK.
E-cadherin is a transmembrane protein and central component of adherens junctions (AJs). The extracellular domain of E-cadherin forms homotypic interactions with E-cadherin on adjacent cells, facilitating the formation of cell-cell adhesions, known as AJs, between neighbouring cells. The intracellular domain of E-cadherin interacts with α-, β- and p120-catenins, linking the AJs to the actin cytoskeleton.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.
View Article and Find Full Text PDFClin Neuropharmacol
January 2025
Department of Neurosurgery, Yubei District Hospital of TCM, Chongqing, China.
Objective: Gliomas are a general designation for neuroepithelial tumors derived from the glial cells of the central nervous system. According to the histopathological and immunohistochemical features, the World Health Organization classifies gliomas into four grades. Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor that has been approved for the treatment of glioblastoma multiforme (GBM) as a second-line therapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!