Proprioception, the sense of limb position and motion, is essential for generating accurate movements. Limb position sense has typically been studied under static conditions (i.e., the fixed position of a limb in space), with less known about dynamic position sense (i.e., limb position during movement). Here we investigated how a person's estimate of hand position varies when using spatial or temporal information to judge the unseen hand's location during reaching. We assessed the acuity of dynamic position sense in two directions, orthogonal to hand movement, which only requires spatial information, and in line with hand movement, which has both spatial and temporal components. Our results showed that people have better proprioceptive acuity in the orthogonal condition where only spatial information is used. We then assessed whether cerebellar damage impairs proprioceptive acuity in both tasks during passive and active movement. Cerebellar patients showed reduced acuity in both tasks and in both movement conditions relative to age-matched controls. However, patients' deficits were most apparent when judgments of active movement relied on temporal information. Furthermore, both cerebellar patient and control performance correlated with the trial-to-trial variability of their active movements: subjects are worse at the proprioceptive tasks when movements are variable. Our results suggest that, during active movements, proprioceptive acuity may be reliant on the motor system's ability to predict motor output. Therefore, the resultant proprioceptive deficits occurring after cerebellar damage may be related to a more general impairment in movement prediction. We assessed limb position sense during movement in patients with cerebellar damage and found deficits in proprioceptive acuity during both passive and active movement. The effect of cerebellar damage was most apparent when individuals relied on both timing and spatial information during active movement. Thus proprioceptive acuity during active movements may be reliant on the motor system's ability to predict motor output.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5539437 | PMC |
http://dx.doi.org/10.1152/jn.00417.2016 | DOI Listing |
J Electromyogr Kinesiol
January 2025
Centro Polifunzionale di Scienze Motorie, Università degli Studi di Genova, Genoa, Italy; Department of Experimental Medicine, Section of Human Physiology, Università degli Studi di Genova, Genoa, Italy.
This study investigated proprioceptive acuity using the conventional joint position reproduction (JPR) task and a modified version, the Dynamic JPR task (D-JPR), during Concentric and Eccentric muscle contractions. Seventeen participants were recruited and received a tactile stimulus indicating the position cue at Initial (INI), Intermediate (INT), and Final (FIN) phases of movements, during either the concentric or eccentric phases. After the movement, they replicated the position where they received the stimulus.
View Article and Find Full Text PDFFront Neurol
January 2025
College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China.
Background: Despite the importance of lower limb sensation in walking highlighted in systematic reviews, there is limited research investigating the effect of proprioceptive deficits after stroke and any relationship with walking ability.
Objectives: With stroke survivors of different walking ability, this study aimed to (1) explore side (affected/unaffected) and movement direction (inversion/plantar flexion) effects in ankle joint position sense (JPS) acuity, and (2) compare ankle JPS acuity between groups of stroke survivors with different walking ability.
Methods: Seventy subacute stroke survivors were recruited and divided into three groups based on walking ability, as determined by their gait speed on the 10-Meter Walking Test: household (<0.
Physiother Res Int
January 2025
College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, China.
Background: Proprioceptive deficits are common among stroke survivors and can negatively impact their balance and postural control. However, there has been little evaluation of the change in proprioceptive deficits in the lower limbs over time after stroke. This study aimed to examine proprioceptive deficits over time after stroke in both the affected and "unaffected" lower limbs.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Health and Human Physiology, Motor Control Laboratory, University of Iowa, 225 S. Grand Avenue, Iowa City, IA 52242, United States.
We investigated proprioceptive acuity for location and motion of a never seen hand-held tool (30 cm long rod) and the accuracy of movements to place tool parts in the location of remembered visual targets. Ten blindfolded right-handed subjects (5 females) reached with the tool held in the right hand to touch the tip and midpoint to the stationary and moving left index-tip, to the right and left ear lobes and to remembered visual target locations. We also tested accuracy of left hand rod reaches to the ear lobes to determine if rod dimensions and control of tool movements experienced during right hand tool use could be used to accurately localize the rod parts when held in the left hand.
View Article and Find Full Text PDFPercept Mot Skills
November 2024
Research Institute for Sport and Exercise, University of Canberra, Bruce, ACT, Australia.
Active movement extent discrimination assessment (AMEDA) is a psychophysical task that evaluates proprioception and tactile acuity of the lower limbs, and it is a method of determining sensorimotor ability. Sensorimotor ability is the ability to judge small differences in movement tasks through the process of receiving sensory messages (sensory input) and producing a response (motor output). Participant attention lapses in prior psychophysical studies have been implicated as a cause for increased measurement variance thresholds in these types of assessments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!