Pharmacologic Characterization of Valbenazine (NBI-98854) and Its Metabolites.

J Pharmacol Exp Ther

Neurocrine Biosciences Inc., San Diego, California (D.E.G., E.S., H.B.); Pharmechanics, Wayne, Pennsylvania (S.R.J.H.); and Crinetics Pharmaceuticals, San Diego, California (A.M.).

Published: June 2017

The vesicular monoamine transporter 2 (VMAT2) is an integral presynaptic protein that regulates the packaging and subsequent release of dopamine and other monoamines from neuronal vesicles into the synapse. Valbenazine (NBI-98854), a novel compound that selectively inhibits VMAT2, is approved for the treatment of tardive dyskinesia. Valbenazine is converted to two significant circulating metabolites in vivo, namely, (+)--dihydrotetrabenazine (R,R,R-HTBZ) and a mono-oxy metabolite, NBI-136110. Radioligand-binding studies were conducted to assess and compare valbenazine, tetrabenazine, and their respective metabolites in their abilities to selectively and potently inhibit [H]-HTBZ binding to VMAT2 in rat striatal, rat forebrain, and human platelet homogenates. A broad panel screen was conducted to evaluate possible off-target interactions of valbenazine, R,R,R-HTBZ, and NBI-136110 at >80 receptor, transporter, and ion channel sites. Radioligand binding showed R,R,R-HTBZ to be a potent VMAT2 inhibitor in homogenates of rat striatum (K = 1.0-2.8 nM), rat forebrain (K = 4.2 nM), and human platelets (K = 2.6-3.3 nM). Valbenazine (K = 110-190 nM) and NBI-136110 (K = 160-220 nM) also exhibited inhibitory effects on VMAT2, but with lower potency than R,R,R-HTBZ. Neither valbenazine, R,R,R-HTBZ, nor NBI-136110 had significant off-target interactions at serotonin (5-HT, 5-HT, 5-HT) or dopamine (D or D) receptor sites. In vivo studies measuring ptosis and prolactin secretion in the rat confirmed the specific and dose-dependent interactions of tetrabenazine and R,R,R-HTBZ with VMAT2. Evaluations of potency and selectivity of tetrabenazine and its pharmacologically active metabolites were also performed. Overall, the pharmacologic characteristics of valbenazine appear consistent with the favorable efficacy and tolerability findings of recent clinical studies [KINECT 2 (NCT01733121), KINECT 3 (NCT02274558)].

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.116.239160DOI Listing

Publication Analysis

Top Keywords

valbenazine
8
valbenazine nbi-98854
8
rat forebrain
8
forebrain human
8
off-target interactions
8
valbenazine rrr-htbz
8
rrr-htbz nbi-136110
8
5-ht 5-ht
8
vmat2
6
rrr-htbz
6

Similar Publications

Positron emission tomography (PET) is frequently used to obtain target occupancy (%TO) of central nervous system (CNS) drug candidates during clinical development. Obtaining %TO with PET can be particularly powerful when the %TO associated with efficacy is known for a protein target. Using the radiotracer [F]AV-133, the relationship between plasma concentration (PK) and %TO of NBI-750142, an experimental inhibitor of the vesicular monoamine transporter type 2 (VMAT2) was obtained in both nonhuman primate (NHP) and human.

View Article and Find Full Text PDF

Drug inhibition and substrate transport mechanisms of human VMAT2.

Nat Commun

January 2025

Shanghai Fifth People's Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

Vesicular monoamine transporter 2 (VMAT2) is crucial for packaging monoamine neurotransmitters into synaptic vesicles, with their dysregulation linked to schizophrenia, mood disorders, and Parkinson's disease. Tetrabenazine (TBZ) and valbenazine (VBZ), both FDA-approved VMAT2 inhibitors, are employed to treat chorea and tardive dyskinesia (TD). Our study presents the structures of VMAT2 bound to substrates serotonin (5-HT) and dopamine (DA), as well as the inhibitors TBZ and VBZ.

View Article and Find Full Text PDF

Introduction: Chorea is a motor manifestation of Huntington's disease (HD), which can lead to decreased functional independence and falls. Even though multiple classes of medications have been used to treat this symptom, only the vesicular monoamine transporter 2 (VMAT2) inhibitors tetrabenazine, deutetrabenazine, and valbenazine have been approved by the FDA for this indication.

Areas Covered: This article reviews the pharmacological properties, clinical efficacy, safety, and tolerability of valbenazine in the treatment of chorea in HD.

View Article and Find Full Text PDF

Tardive Dyskinesia (TD) can occur in people exposed to dopamine receptor antagonists (DRAs). Its clinical management remains challenging. We conducted a systematic review/random-effects network meta-analysis (NMA) searching PubMed/MEDLINE/PsycINFO/ClinicalTrials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!