A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiphasic Regulation of Systemic and Peripheral Organ Metabolic Responses to Cardiac Hypertrophy. | LitMetric

Multiphasic Regulation of Systemic and Peripheral Organ Metabolic Responses to Cardiac Hypertrophy.

Circ Heart Fail

From the Department of Physiology and Biophysics (C.W.L., S.X., M.M., H.W.K., A.C.C., J.M.O., E.D.L.) and Center for Cardiovascular Research (X.W., A.C.C., J.M.O., E.D.L.), University of Illinois College of Medicine at Chicago; Department of Kinesiology and Nutrition, University of Illinois at Chicago College of Applied Health Sciences (J.P., G.F.); and Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL (A.C.C., E.D.L.).

Published: April 2017

Background: Reduced fat oxidation in hypertrophied hearts coincides with a shift of carnitine palmitoyl transferase I from muscle to increased liver isoforms. Acutely increased carnitine palmitoyl transferase I in normal rodent hearts has been shown to recapitulate the reduced fat oxidation and elevated atrial natriuretic peptide message of cardiac hypertrophy.

Methods And Results: Because of the potential for reduced fat oxidation to affect cardiac atrial natriuretic peptide, and thus, induce adipose lipolysis, we studied peripheral and systemic metabolism in male C57BL/6 mice model of transverse aortic constriction in which left ventricular hypertrophy occurred by 2 weeks without functional decline until 16 weeks (ejection fraction, -45.6%; fractional shortening, -22.6%). We report the first evidence for initially improved glucose tolerance and insulin sensitivity in response to 2 weeks transverse aortic constriction versus sham, linked to enhanced insulin signaling in liver and visceral adipose tissue (epididymal white adipose tissue [WAT]), reduced WAT inflammation, elevated adiponectin, mulitilocular subcutaneous adipose tissue (inguinal WAT) with upregulated oxidative/thermogenic gene expression, and downregulated lipolysis and lipogenesis genes in epididymal WAT. By 6 weeks transverse aortic constriction, the metabolic profile reversed with impaired insulin sensitivity and glucose tolerance, reduced insulin signaling in liver, epididymal WAT and heart, and downregulation of oxidative enzymes in brown adipose tissue and oxidative and lipogenic genes in inguinal WAT.

Conclusions: Changes in insulin signaling, circulating natriuretic peptides and adipokines, and varied expression of adipose genes associated with altered insulin response/glucose handling and thermogenesis occurred prior to any functional decline in transverse aortic constriction hearts. The findings demonstrate multiphasic responses in extracardiac metabolism to pathogenic cardiac stress, with early iWAT browning providing potential metabolic benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5466817PMC
http://dx.doi.org/10.1161/CIRCHEARTFAILURE.117.003864DOI Listing

Publication Analysis

Top Keywords

transverse aortic
16
aortic constriction
16
adipose tissue
16
reduced fat
12
fat oxidation
12
insulin signaling
12
carnitine palmitoyl
8
palmitoyl transferase
8
atrial natriuretic
8
natriuretic peptide
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!