A probabilistic and interdisciplinary risk-benefit assessment (RBA) model integrating microbiological, nutritional, and chemical components was developed for infant milk, with the objective of predicting the health impact of different scenarios of consumption. Infant feeding is a particular concern of interest in RBA as breast milk and powder infant formula have both been associated with risks and benefits related to chemicals, bacteria, and nutrients, hence the model considers these three facets. Cronobacter sakazakii, dioxin-like polychlorinated biphenyls (dl-PCB), and docosahexaenoic acid (DHA) were three risk/benefit factors selected as key issues in microbiology, chemistry, and nutrition, respectively. The present model was probabilistic with variability and uncertainty separated using a second-order Monte Carlo simulation process. In this study, advantages and limitations of undertaking probabilistic and interdisciplinary RBA are discussed. In particular, the probabilistic technique was found to be powerful in dealing with missing data and to translate assumptions into quantitative inputs while taking uncertainty into account. In addition, separation of variability and uncertainty strengthened the interpretation of the model outputs by enabling better consideration and distinction of natural heterogeneity from lack of knowledge. Interdisciplinary RBA is necessary to give more structured conclusions and avoid contradictory messages to policymakers and also to consumers, leading to more decisive food recommendations. This assessment provides a conceptual development of the RBA methodology and is a robust basis on which to build upon.

Download full-text PDF

Source
http://dx.doi.org/10.1111/risa.12792DOI Listing

Publication Analysis

Top Keywords

risk-benefit assessment
8
infant feeding
8
integrating microbiological
8
microbiological nutritional
8
nutritional chemical
8
chemical components
8
probabilistic interdisciplinary
8
variability uncertainty
8
interdisciplinary rba
8
probabilistic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!