Background: Dairy desserts are popular traditional products, but because of their high calorie or fat content, they can be unsuitable for people who have certain dietary requirements. The aim of this study was to design panna cottas with similar organoleptic and textural properties to the traditional ones but with a lower fat content, by replacing part of the cream with new emulsions prepared with hydrocolloids (cellulose ethers), namely methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC).
Results: Incorporating the MC and HPMC emulsions modified the textural properties (firmness and stiffness) of the panna cottas. Regarding the sensory results, the panna cottas prepared with the MC and HPMC emulsions were considered lumpy and soft respectively.
Conclusion: Considering the results as a whole, the cellulose type and the amount of cream are factors to take into account. Although the texture and taste of the control panna cotta are better than those of the panna cottas prepared with the MC and HPMC emulsions, it is possible to replace 75% of the cream in traditional panna cottas with HPMC emulsion and obtain good consumer acceptance and purchase intention. The panna cottas with 75% substitution by HPMC emulsion were described as creamy, with smooth appearance and moist mouth feel. © 2017 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.8373 | DOI Listing |
J Sci Food Agric
November 2017
Food Microstructure and Chemistry Research Group, Department of Food Technology, Universitat Politècnica de València, Valencia, Spain.
Background: Dairy desserts are popular traditional products, but because of their high calorie or fat content, they can be unsuitable for people who have certain dietary requirements. The aim of this study was to design panna cottas with similar organoleptic and textural properties to the traditional ones but with a lower fat content, by replacing part of the cream with new emulsions prepared with hydrocolloids (cellulose ethers), namely methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC).
Results: Incorporating the MC and HPMC emulsions modified the textural properties (firmness and stiffness) of the panna cottas.
Food Chem
April 2017
Food Microstructure and Chemistry Research Group, Department of Food Technology, Polytechnic University of Valencia, Spain. Electronic address:
The first aim of this study was to observe the effect of adding dairy proteins and reducing the cream content in order to obtain healthier dairy desserts for use in weight management. The extra-whey protein low-cream sample had the densest, firmest matrix, which is related to increased satiety. The second aim was to investigate the in vitro gastric digestion behavior of whey and casein proteins in a heat-treated semisolid real food.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!