New de novo sources of omega 3 (n-3) long chain polyunsaturated fatty acids (LC-PUFA) are required as alternatives to fish oil in aquafeeds in order to maintain adequate levels of the beneficial fatty acids, eicosapentaenoic and docosahexaenoic (EPA and DHA, respectively). The present study investigated the use of an EPA+DHA oil derived from transgenic Camelina sativa in Atlantic salmon (Salmo salar) feeds containing low levels of fishmeal (35%) and fish oil (10%), reflecting current commercial formulations, to determine the impacts on tissue fatty acid profile, intestinal transcriptome, and health of farmed salmon. Post-smolt Atlantic salmon were fed for 12-weeks with one of three experimental diets containing either a blend of fish oil/rapeseed oil (FO), wild-type camelina oil (WCO) or transgenic camelina oil (DCO) as added lipid source. The DCO diet did not affect any of the fish performance or health parameters studied. Analyses of the mid and hindgut transcriptomes showed only mild effects on metabolism. Flesh of fish fed the DCO diet accumulated almost double the amount of n-3 LC-PUFA than fish fed the FO or WCO diets, indicating that these oils from transgenic oilseeds offer the opportunity to increase the n-3 LC-PUFA in farmed fish to levels comparable to those found a decade ago.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389825PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175415PLOS

Publication Analysis

Top Keywords

transgenic camelina
12
fish oil
12
atlantic salmon
12
oil
8
epa dha
8
camelina sativa
8
fish
8
salmon salmo
8
salmo salar
8
intestinal transcriptome
8

Similar Publications

The emerging crop Camelina sativa (L.) Crantz (camelina) is a Brassicaceae oilseed with a rapidly growing reputation for the deployment of advanced lipid biotechnology and metabolic engineering. Camelina is recognised by agronomists for its traits including yield, oil/protein content, drought tolerance, limited input requirements, plasticity and resilience.

View Article and Find Full Text PDF
Article Synopsis
  • CRISPR/Cas9 is widely used for genome editing to study gene function and enhance traits in plants, but its specificity in certain seed and clonally propagated species hasn't been thoroughly examined.
  • Seven potato and nine camelina plants with stable Cas9 edits were analyzed for on-target and off-target effects using advanced genome sequencing.
  • The study found mainly mosaic somatic edits and transgenerational editing in camelina, with minimal off-target activity, which is crucial for understanding the safety and effectiveness of genome editing in food crops.
View Article and Find Full Text PDF

Acetyl-TAG (3-acetyl-1,2-diacylglycerol), unique triacylglycerols (TAG) possessing an acetate group at the -3 position, exhibit valuable properties, such as reduced viscosity and freezing points. Previous attempts to engineer acetyl-TAG production in oilseed crops did not achieve the high levels found in naturally producing seeds. Here, we demonstrate the successful generation of camelina and pennycress transgenic lines accumulating nearly pure acetyl-TAG at 93 mol% and 98 mol%, respectively.

View Article and Find Full Text PDF

Atlantic salmon were fed either a diet reflecting current commercial feeds with added oil supplied by a blend of fish oil and rapeseed oil (COM), or a diet formulated with oil from transgenic Camelina sativa containing 20% EPA + DHA (TCO). Salmon were grown from smolt to market size (>3 kg) in sea pens under semi-commercial conditions. There were no differences in growth, feed efficiency or survival between fish fed the TCO or COM diets at the end of the trial.

View Article and Find Full Text PDF

Camelinasativa has considerable promise as a dedicated industrial oilseed crop. Its oil-based blends have been tested and approved as liquid transportation fuels. Previously, we utilized metabolomic and transcriptomic profiling approaches and identified metabolic bottlenecks that control oil production and accumulation in seeds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!