Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids.

Biophys J

Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland. Electronic address:

Published: April 2017

Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5390091PMC
http://dx.doi.org/10.1016/j.bpj.2017.02.039DOI Listing

Publication Analysis

Top Keywords

brownian ratchet
12
para atpase
12
directed segregation
12
ratchet mechanism
8
low-copy-number plasmids
8
plasmid
8
atpase binds
8
para-depletion zone
8
plasmid motility
8
fidelity plasmid
8

Similar Publications

DNA-nanoparticle motor is a burnt-bridge Brownian ratchet moving on RNA-modified surface driven by Ribonuclease H (RNase H), and one of the fastest nanoscale artificial motors. However, its speed is still much lower than those of motor proteins. Here we resolve elementary processes of motion and reveal long pauses caused by slow RNase H binding are the bottleneck.

View Article and Find Full Text PDF

Kinetics and Optimality of Influenza A Virus Locomotion.

Phys Rev Lett

December 2024

Chan Zuckerberg Biohub-San Francisco, 499 Illinois Street, San Francisco, California 94158, USA.

Influenza A viruses (IAVs) must navigate through a dense extracellular mucus to infect airway epithelial cells. The mucous layer, composed of glycosylated biopolymers (mucins), presents sialic acid that binds to ligands on the viral envelope and can be irreversibly cleaved by viral enzymes. It was recently discovered that filamentous IAVs exhibit directed persistent motion along their long axis on sialic acid-coated surfaces.

View Article and Find Full Text PDF

The thermodynamic relations for a Brownian particle moving in a discrete ratchet potential coupled with quadratically decreasing temperature are explored as a function of time. We show that this thermal arrangement leads to a higher velocity (lower efficiency) compared to a Brownian particle operating between hot and cold baths, and a heat bath where the temperature linearly decreases along with the reaction coordinate. The results obtained in this study indicate that if the goal is to design a fast-moving motor, the quadratic thermal arrangement is more advantageous than the other two thermal arrangements.

View Article and Find Full Text PDF

Biased movement of monomeric kinesin-3 KLP-6 explained by a symmetric Brownian ratchet model.

Biophys J

January 2025

Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan; Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, Aramaki-Aoba 6-3, Sendai, Miyagi, Japan. Electronic address:

Most kinesin molecular motors dimerize to move processively and efficiently along microtubules; however, some can maintain processivity even in a monomeric state. Previous studies have suggested that asymmetric potentials between the motor domain and microtubules underlie this motility. In this study, we demonstrate that the kinesin-3 family motor protein KLP-6 can move forward along microtubules as a monomer upon release of autoinhibition.

View Article and Find Full Text PDF

Microscopic particle separation plays a vital role in various scientific and industrial domains. Conventional separation methods relying on external forces or physical barriers inherently exhibit limitations in terms of efficiency, selectivity, and adaptability across diverse particle types. To overcome these limitations, researchers are constantly exploring new separation approaches, among which ratchet-based separation is a noteworthy method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!