Gating Charge Calculations by Computational Electrophysiology Simulations.

Biophys J

Institute of Complex Systems, Zelluläre Biophysik (ICS-4) and JARA-HPC, Forschungszentrum Jülich, Jülich, Germany.

Published: April 2017

AI Article Synopsis

  • This study focuses on how electrical cell signaling adjusts ion channel and receptor functions in response to membrane potential changes, emphasizing the complexity of voltage sensing in membrane proteins.
  • The authors utilized molecular dynamics simulations to measure gating charge by assessing the electrical properties of proteins embedded in membranes, specifically examining the HIV gp41 fusion peptide and two voltage-dependent proteins for validation.
  • The findings offer insights into how the T1 domain affects voltage sensing in Kv1.2 channels and the binding of sodium ions in transporters, enhancing our understanding of voltage sensitivity mechanisms.

Article Abstract

Electrical cell signaling requires adjustment of ion channel, receptor, or transporter function in response to changes in membrane potential. For the majority of such membrane proteins, the molecular details of voltage sensing remain insufficiently understood. Here, we present a molecular dynamics simulation-based method to determine the underlying charge movement across the membrane-the gating charge-by measuring electrical capacitor properties of membrane-embedded proteins. We illustrate the approach by calculating the charge transfer upon membrane insertion of the HIV gp41 fusion peptide, and validate the method on two prototypical voltage-dependent proteins, the Kv1.2 K channel and the voltage sensor of the Ciona intestinalis voltage-sensitive phosphatase, against experimental data. We then use the gating charge analysis to study how the T1 domain modifies voltage sensing in Kv1.2 channels and to investigate the voltage dependence of the initial binding of two Na ions in Na-coupled glutamate transporters. Our simulation approach quantifies various mechanisms of voltage sensing, enables direct comparison with experiments, and supports mechanistic interpretation of voltage sensitivity by fractional amino acid contributions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5389965PMC
http://dx.doi.org/10.1016/j.bpj.2017.02.016DOI Listing

Publication Analysis

Top Keywords

voltage sensing
12
gating charge
8
voltage
6
charge calculations
4
calculations computational
4
computational electrophysiology
4
electrophysiology simulations
4
simulations electrical
4
electrical cell
4
cell signaling
4

Similar Publications

A conifer metabolite corrects episodic ataxia type 1 by voltage sensor-mediated ligand activation of Kv1.1.

Proc Natl Acad Sci U S A

January 2025

Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697.

Loss-of-function sequence variants in , which encodes the voltage-gated potassium channel Kv1.1, cause Episodic Ataxia Type 1 (EA1) and epilepsy. Due to a paucity of drugs that directly rescue mutant Kv1.

View Article and Find Full Text PDF

Skin-Integrated Electrogenetic Regulation of Vasculature for Accelerated Wound Healing.

Adv Sci (Weinh)

January 2025

ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.

Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).

View Article and Find Full Text PDF

Purpose: The purpose of this study was to analyze the retinal sensitivity under photopic, mesopic, and scotopic conditions in a cohort of patients affected with KCNV2-associated retinopathy.

Methods: Cross-sectional evaluation of molecularly confirmed individuals was conducted. Data were obtained prospectively.

View Article and Find Full Text PDF

Ferroelectric/Electric-Double-Layer-Modulated Synaptic Thin Film Transistors toward an Artificial Tactile Perception System.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science, National Engineering Lab for TFT-LCD Materials and Technologies, Fudan University, Shanghai 200433, China.

Tactile sensation and recognition in the human brain are indispensable for interaction between the human body and the surrounding environment. It is quite significant for intelligent robots to simulate human perception and decision-making functions in a more human-like way to perform complex tasks. A combination of tactile piezoelectric sensors with neuromorphic transistors provides an alternative way to achieve perception and cognition functions for intelligent robots in human-machine interaction scenarios.

View Article and Find Full Text PDF

Purpose: With the widespread introduction of dual energy computed tomography (DECT), applications utilizing the spectral information to perform material decomposition became available. Among these, a popular application is to decompose contrast-enhanced CT images into virtual non-contrast (VNC) or virtual non-iodine images and into iodine maps. In 2021, photon-counting CT (PCCT) was introduced, which is another spectral CT modality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!