Binding of Thioflavin-T to Amyloid Fibrils Leads to Fluorescence Self-Quenching and Fibril Compaction.

Biochemistry

Division of Chemical Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96 Gothenburg, Sweden.

Published: April 2017

Thioflavin-T binds to and detects amyloid fibrils via fluorescence enhancement. Using a combination of linear dichroism and fluorescence spectroscopies, we report that the relation between the emission intensity and binding of thioflavin-T to insulin fibrils is nonlinear and discuss this in relation to its use in kinetic assays. We demonstrate, from fluorescence lifetime recordings, that the nonlinearity is due to thioflavin-T being sensitive to self-quenching. In addition, thioflavin-T can induce fibril compaction but not alter fibril structure. Our work underscores the photophysical complexity of thioflavin-T and the necessity of calibrating the linear range of its emission response for quantitative in vitro studies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.biochem.7b00035DOI Listing

Publication Analysis

Top Keywords

binding thioflavin-t
8
amyloid fibrils
8
fibril compaction
8
thioflavin-t
5
thioflavin-t amyloid
4
fibrils leads
4
fluorescence
4
leads fluorescence
4
fluorescence self-quenching
4
self-quenching fibril
4

Similar Publications

Kinetic and Affinity Profiling Rare Earth Metals Using a DNA Aptamer.

J Am Chem Soc

January 2025

Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

Rare earth elements (REEs) are widely used in various high-tech industries. Developing affinity ligands that can detect and distinguish REEs is at the forefront of analytical chemistry. It is also interesting to understand the limits of natural biomolecules for the recognition of REEs.

View Article and Find Full Text PDF

Self-Assembly of Human Fibrinogen into Microclot-Mimicking Antifibrinolytic Amyloid Fibrinogen Particles.

ACS Appl Bio Mater

December 2024

MOE Key Laboratory of Bio-Intelligent Manufacturing, Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116024, China.

Recent clinical studies have highlighted the presence of microclots in the form of amyloid fibrinogen particles (AFPs) in plasma samples from Long COVID patients. However, the clinical significance of these abnormal, nonfibrillar self-assembly aggregates of human fibrinogen remains debated due to the limited understanding of their structural and biological characteristics. In this study, we present a method for generating mimetic microclots in vitro.

View Article and Find Full Text PDF

Effect of Gold Nanoparticles on the Conformation of Bovine Serum Albumin: Insights from CD Spectroscopic Analysis and Molecular Dynamics Simulations.

ACS Omega

December 2024

Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585, Japan.

With the development of nanotechnology, there is growing interest in using nanoparticles (NPs) for biomedical applications, such as diagnostics, drug delivery, imaging, and nanomedicine. The protein's structural stability plays a pivotal role in its functionality, and any alteration in this structure can have significant implications, including disease progression. Herein, we performed a combined experimental and computational study of the effect of gold NPs with a diameter of 5 nm (5 nm Au-NPs) on the structural stability of bovine serum albumin (BSA) protein in the absence and presence of NaCl salt.

View Article and Find Full Text PDF

Purpose: This study examines the interaction between benzoylmesaconine (BMA) and hen egg white lysozyme (HEWL) under various physiological conditions, aiming to determine how BMA affects the HEWL's structure and function.

Methods: Several analytical techniques were used, including tryptophan assay, light scattering, thioflavin T (ThT)-binding assay, dynamic light scattering, 8-anilino-1-naphthalenesulfonic acid (ANS)-binding assay, circular dichroism (CD) spectroscopy, enzyme activity assay, and molecular docking.

Results: The tryptophan assay displayed a concentration-dependent decrease in tryptophan fluorescence, showing an interaction between BMA and HEWL.

View Article and Find Full Text PDF

Newly synthesized naphthalene-based twisted intramolecular charge transfer (TICT) molecules show 8.5- and 2.6-fold increases in fluorescence intensity upon binding with protein aggregates in comparison with the fluorescence enhancement for thioflavin T (ThT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!