A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of Simple QSPR Models for the Prediction of the Heat of Decomposition of Organic Peroxides. | LitMetric

Development of Simple QSPR Models for the Prediction of the Heat of Decomposition of Organic Peroxides.

Mol Inform

Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), F-75005, Paris, France.

Published: October 2017

Quantitative structure-property relationships represent alternative method to experiments to access the estimation of physico-chemical properties of chemicals for screening purpose at R&D level but also to gather missing data in regulatory context. In particular, such predictions were encouraged by the REACH regulation for the collection of data, provided that they are developed respecting the rigorous principles of validation proposed by OECD. In this context, a series of organic peroxides, unstable chemicals which can easily decompose and may lead to explosion, were investigated to develop simple QSPR models that can be used in a regulatory framework. Only constitutional and topological descriptors were employed to achieve QSPR models predicting the heat of decomposition, which could be used without any time consuming preliminary structure calculations at quantum chemical level. To validate the models, the original experimental dataset was divided into a training and a validation set according to two methods of partitioning, one based on the property value and the other based on the structure of the molecules by the mean of PCA. Four QSPR models were developed upon the type of descriptors and the methods of partitioning. The 2 models issuing from the PCA based method were highlighted as they presented good predictive power and they are easier to apply than our previous quantum chemical based model, since they do not need any preliminary calculations.

Download full-text PDF

Source
http://dx.doi.org/10.1002/minf.201700024DOI Listing

Publication Analysis

Top Keywords

qspr models
16
simple qspr
8
heat decomposition
8
organic peroxides
8
quantum chemical
8
methods partitioning
8
models
6
development simple
4
qspr
4
models prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!