AR9 is a giant Bacillus subtilis phage whose uracil-containing double-stranded DNA genome encodes distant homologs of β and β' subunits of bacterial RNA polymerase (RNAP). The products of these genes are thought to assemble into two non-canonical multisubunit RNAPs - a virion RNAP (vRNAP) that is injected into the host along with phage DNA to transcribe early phage genes, and a non-virion RNAP (nvRNAP), which is synthesized during the infection and transcribes late phage genes. We purified the AR9 nvRNAP from infected B. subtilis cells and characterized its transcription activity in vitro. The AR9 nvRNAP requires uracils rather than thymines at specific conserved positions of late viral promoters. Uniquely, the nvRNAP recognizes the template strand of its promoters and is capable of specific initiation of transcription from both double- and single-stranded DNA. While the AR9 nvRNAP does not contain homologs of bacterial RNAP α subunits, it contains, in addition to the β and β'-like subunits, a phage protein gp226. The AR9 nvRNAP lacking gp226 is catalytically active but unable to bind to promoter DNA. Thus, gp226 is required for promoter recognition by the AR9 nvRNAP and may represent a new group of transcription initiation factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449584 | PMC |
http://dx.doi.org/10.1093/nar/gkx264 | DOI Listing |
J Mol Biol
September 2024
Shenzhen MSU-BIT University, 1 International University Park Road, Dayun New Town, Longgang District, Shenzhen, Guangdong Province 518172, People's Republic of China. Electronic address:
Nat Commun
June 2022
Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, 77555-0647, USA.
Recognition of promoters in bacterial RNA polymerases (RNAPs) is controlled by sigma subunits. The key sequence motif recognized by the sigma, the -10 promoter element, is located in the non-template strand of the double-stranded DNA molecule ~10 nucleotides upstream of the transcription start site. Here, we explain the mechanism by which the phage AR9 non-virion RNAP (nvRNAP), a bacterial RNAP homolog, recognizes the -10 element of its deoxyuridine-containing promoter in the template strand.
View Article and Find Full Text PDFBiochem Soc Trans
February 2019
Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, U.K.
Transcription, the first step of gene expression, is accomplished in all domains of life by the multisubunit RNA polymerase (msRNAP). Accordingly, the msRNAP is an ancient enzyme that is ubiquitous across all cellular organisms. Conserved in absolutely all msRNAPs is the catalytic magnesium-binding aspartate triad and the structural fold it is present on, the double ψ β barrel (DPBB).
View Article and Find Full Text PDFNucleic Acids Res
June 2017
Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.
AR9 is a giant Bacillus subtilis phage whose uracil-containing double-stranded DNA genome encodes distant homologs of β and β' subunits of bacterial RNA polymerase (RNAP). The products of these genes are thought to assemble into two non-canonical multisubunit RNAPs - a virion RNAP (vRNAP) that is injected into the host along with phage DNA to transcribe early phage genes, and a non-virion RNAP (nvRNAP), which is synthesized during the infection and transcribes late phage genes. We purified the AR9 nvRNAP from infected B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!